D K Gaikwad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8798180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Newly developed glasses containing Si/Cd/Li/Gd and their high performance for radiation applications: role of Er2O3. Journal of Materials Science: Materials in Electronics, 2021, 32, 9440-9451.	2.2	55
2	Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+x)PbO 10WO3 10Na2Oâ€`â^`â€~10MgO – (40-x)B2O3 glasses. Progress in Nuclear Energy, 2020, 119, 103047.	2.9	93
3	Shielding behaviour of (20 + x) Bi2O3 – 20BaO–10Na2O–10MgO–(40-x) B2O3: An experimental an Carlo study. Chemical Physics, 2020, 529, 110571.	d Monte 1.9	42
4	Gamma Radiation Studies on Organic Nonlinear Optical Materials in the Energy Range 122–1330ÂkeV. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2020, 90, 839-844.	1.2	8
5	Study on the radiation shielding features of some chemical compounds. Journal of Physics: Conference Series, 2020, 1644, 012061.	0.4	3
6	Gamma Ray Attenuation Properties Biomedical Important Organic Compounds. Journal of Physics: Conference Series, 2020, 1644, 012062.	0.4	0
7	Synthesis, local structure and optical property studies of α-SnS microrods by synchrotron X-ray pair distribution function and micro-Raman shift. RSC Advances, 2020, 10, 21277-21282.	3.6	4
8	PANI-ZnO Cladding-Modified Optical Fiber Biosensor for Urea Sensing Based on Evanescent Wave Absorption. Frontiers in Materials, 2020, 7, .	2.4	18
9	Structural, optical features and gamma ray shielding properties of Bi2O3–TeO2–B2O3-GeO2 glass system. Ceramics International, 2020, 46, 17325-17334.	4.8	48
10	Radiation interaction properties of verious polymers, satureted and unsaturated fatty acids: A comparative investigation of Monte carlo simulation and NISTXCOM. Journal of Physics: Conference Series, 2020, 1644, 012024.	0.4	0
11	Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). Journal of Non-Crystalline Solids, 2019, 507, 30-37.	3.1	162
12	Doping effect on the local structure of metamagnetic Co doped Ni/NiO:GO core–shell nanoparticles using X-ray absorption spectroscopy and the pair distribution function. Physical Chemistry Chemical Physics, 2019, 21, 1294-1307.	2.8	15
13	Comparative study of gamma ray shielding competence of WO 3 -TeO 2 -PbO glass system to different glasses and concretes. Materials Chemistry and Physics, 2018, 213, 508-517.	4.0	140
14	Heavy metal ions removal from waste water bythe natural zeolites. Materials Today: Proceedings, 2018, 5, 17930-17934.	1.8	35
15	Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses. Journal of Alloys and Compounds, 2018, 765, 451-458.	5.5	141
16	Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Radiation Effects and Defects in Solids, 2018, 173, 900-914.	1.2	86
17	Radiation shielding properties of pentaternary borate glasses using MCNPX code. Journal of Physics and Chemistry of Solids, 2018, 121, 17-21.	4.0	53
18	Radiation shielding and gamma ray attenuation properties of some polymers. Nuclear Technology and Radiation Protection, 2017, 32, 288-293.	0.8	32

#	Article	IF	CITATIONS
19	Measurement of attenuation cross-sections of some fatty acids in the energy range 122–1330 keV. Pramana - Journal of Physics, 2016, 87, 1.	1.8	18
20	Effects of gamma irradiation on some chemicals using an Nal (Tl) detector. Radiation Effects and Defects in Solids, 2016, 171, 398-407.	1.2	14