Woodring E Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/879757/publications.pdf

Version: 2024-02-01

93 papers 17,883 citations

52 h-index 85 g-index

95 all docs 95
docs citations

95 times ranked 15512 citing authors

#	Article	IF	CITATIONS
1	Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science, 1998, 279, 349-352.	6.0	4,536
2	Telomerase activity in human germline and embryonic tissues and cells. Genesis, 1996, 18, 173-179.	3.1	1,172
3	Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genetics, 1997, 17, 498-502.	9.4	881
4	Absence of cancer–associated changes in human fibroblasts immortalized with telomerase. Nature Genetics, 1999, 21, 115-118.	9.4	753
5	Immortalization of Human Bronchial Epithelial Cells in the Absence of Viral Oncoproteins. Cancer Research, 2004, 64, 9027-9034.	0.4	573
6	Hayflick, his limit, and cellular ageing. Nature Reviews Molecular Cell Biology, 2000, 1, 72-76.	16.1	566
7	Telomeres and telomerase: three decades of progress. Nature Reviews Genetics, 2019, 20, 299-309.	7.7	534
8	Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Research, 1995, 23, 3794-3795.	6.5	474
9	Telomere Position Effect in Human Cells. Science, 2001, 292, 2075-2077.	6.0	424
10	Role of telomeres and telomerase in cancer. Seminars in Cancer Biology, 2011, 21, 349-353.	4.3	407
11	Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Medicine, 2000, 6, 849-851.	15.2	372
12	The two-stage mechanism controlling cellular senescence and immortalization. Experimental Gerontology, 1992, 27, 383-389.	1.2	358
13	Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell, 2011, 10, 761-768.	3.0	348
14	Historical claims and current interpretations of replicative aging. Nature Biotechnology, 2002, 20, 682-688.	9.4	345
15	Inhibition of human telomerase activity by peptide nucleic acids. Nature Biotechnology, 1996, 14, 615-619.	9.4	342
15		9.4	342 269
	POT1 protects telomeres from a transient DNA damage response and determines how human		

#	Article	IF	Citations
19	Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle, 2011, 1, 34.	1.9	228
20	Lipid modification of GRN163, an N3′ → P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene, 2005, 24, 5262-5268.	2.6	222
21	Telomere Extension Occurs at Most Chromosome Ends and Is Uncoupled from Fill-In in Human Cancer Cells. Cell, 2009, 138, 463-475.	13.5	214
22	Defining the molecular mechanisms of human cell immortalization. Biochimica Et Biophysica Acta: Reviews on Cancer, 1991, 1072, 1-7.	3.3	198
23	Telomere-End Processing. Molecular Cell, 2005, 18, 131-138.	4.5	194
24	An Alternate Splicing Variant of the Human Telomerase Catalytic Subunit Inhibits Telomerase Activity. Neoplasia, 2000, 2, 433-440.	2.3	178
25	Comparison of telomere length measurement methods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160451.	1.8	173
26	Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes. Molecular and Cellular Biology, 2017, 37, .	1.1	156
27	Telomeropathies: An emerging spectrum disorder. Journal of Cell Biology, 2014, 205, 289-299.	2.3	148
28	Human diseases of telomerase dysfunction: insights into tissue aging. Nucleic Acids Research, 2007, 35, 7406-7416.	6.5	142
29	Regulation of the Human Telomerase Gene TERT by Telomere Position Effectâ€"Over Long Distances (TPE-OLD): Implications for Aging and Cancer. PLoS Biology, 2016, 14, e2000016.	2.6	140
30	Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes and Development, 2019, 33, 814-827.	2.7	130
31	SIRT6 is required for maintenance of telomere position effect in human cells. Nature Communications, 2011, 2, 433.	5.8	126
32	A method for measuring the distribution of the shortest telomeres in cells and tissues. Nature Communications, 2017, 8, 1356.	5.8	123
33	Comparison of the telomeric repeat amplification protocol (TRAP) to the new TRAP-eze telomerase detection kit. Cytotechnology, 1996, 18, 237-248.	0.7	116
34	Mechanism-based combination telomerase inhibition therapy. Cancer Cell, 2005, 7, 1-2.	7.7	113
35	Induction of Telomere Dysfunction Mediated by the Telomerase Substrate Precursor 6-Thio-2′-Deoxyguanosine. Cancer Discovery, 2015, 5, 82-95.	7.7	113
36	Large-Scale Population Analysis Challenges the Current Criteria for the Molecular Diagnosis of Fascioscapulohumeral Muscular Dystrophy. American Journal of Human Genetics, 2012, 90, 628-635.	2.6	104

#	Article	IF	Citations
37	Comparison of DNA Quantification Methods for Next Generation Sequencing. Scientific Reports, 2016, 6, 24067.	1.6	104
38	Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Research, 2014, 42, e104-e104.	6.5	102
39	Identification of Determinants for Inhibitor Binding within the RNA Active Site of Human Telomerase Using PNA Scanningâ€. Biochemistry, 1997, 36, 11873-11880.	1.2	97
40	Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nature Structural and Molecular Biology, 2013, 20, 671-678.	3.6	95
41	Characterization of ataxia telangiectasia fibroblasts with extended life-span through telomerase expression. Oncogene, 2001, 20, 278-288.	2.6	92
42	Telomere Biology in Aging and Cancer. Journal of the American Geriatrics Society, 2005, 53, S292-S294.	1.3	89
43	Alternative splicing regulation of telomerase: a new paradigm?. Trends in Genetics, 2014, 30, 430-438.	2.9	85
44	Telomere length regulates ISG15 expression in human cells. Aging, 2009, 1, 608-621.	1.4	83
45	Heterogeneous Nuclear Ribonucleoproteins C1 and C2 Associate with the RNA Component of Human Telomerase. Molecular and Cellular Biology, 2000, 20, 9084-9091.	1.1	7 5
46	AGING: When Do Telomeres Matter?. Science, 2001, 291, 839-840.	6.0	72
47	<i>SORBS2</i> transcription is activated by telomere position effect–over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy. Genome Research, 2015, 25, 1781-1790.	2.4	71
48	The CDC13-STN1-TEN1 complex stimulates Pol $\hat{l}\pm$ activity by promoting RNA priming and primase-to-polymerase switch. Nature Communications, 2014, 5, 5762.	5.8	69
49	NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nature Communications, 2018, 9, 3112.	5.8	63
50	Modification of Subtelomeric DNA. Molecular and Cellular Biology, 2004, 24, 4571-4580.	1.1	59
51	Regulation of Telomerase Alternative Splicing: A Target for Chemotherapy. Cell Reports, 2013, 3, 1028-1035.	2.9	58
52	Disruption of Wnt/ \hat{l}^2 -Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells. Molecular and Cellular Biology, 2015, 35, 2425-2435.	1.1	58
53	Selective targeting of mutant adenomatous polyposis coli (<i>APC</i>) in colorectal cancer. Science Translational Medicine, 2016, 8, 361ra140.	5.8	55
54	Telomere length and telomerase activity in T cells are biomarkers of highâ€performing centenarians. Aging Cell, 2019, 18, e12859.	3.0	54

#	Article	IF	Citations
55	Inexpensive low-oxygen incubators. Nature Protocols, 2006, 1, 2088-2090.	5.5	47
56	Analysis of Telomeres and Telomerase. Current Protocols in Cell Biology, 2003, 20, Unit 18.6.	2.3	45
57	The Metastatic Potential and Chemoresistance of Human Pancreatic Cancer Stem Cells. PLoS ONE, 2016, 11, e0148807.	1.1	45
58	Alternative lengthening of telomeres can be maintained by preferential elongation of lagging strands. Nucleic Acids Research, 2017, 45, gkw1295.	6.5	43
59	NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells. Oncogene, 2019, 38, 2937-2952.	2.6	42
60	Telomerase-Mediated Strategy for Overcoming Non–Small Cell Lung Cancer Targeted Therapy and Chemotherapy Resistance. Neoplasia, 2018, 20, 826-837.	2.3	40
61	Telomeres in dyskeratosis congenita. Nature Genetics, 2004, 36, 437-438.	9.4	39
62	MOLECULAR BIOLOGY: Mutant Dyskerin Ends Relationship with Telomerase. Science, 1999, 286, 2284-2285.	6.0	32
63	Regulation of human telomerase splicing by RNA:RNA pairing. Nature Communications, 2014, 5, 3306.	5.8	32
64	Telomerase activity in human germline and embryonic tissues and cells., 1996, 18, 173.		32
65	The Maintenance of Telomere Length in CD28+ T Cells During T Lymphocyte Stimulation. Scientific Reports, 2017, 7, 6785.	1.6	31
66	Branching morphogenesis of immortalized human bronchial epithelial cells in three-dimensional culture. Differentiation, 2014, 87, 119-126.	1.0	30
67	Impaired telomere maintenance in Alazami syndrome patients with LARP7 deficiency. BMC Genomics, 2016, 17, 749.	1.2	30
68	Analysis of Keloid Response to 5-Fluorouracil Treatment and Long-Term Prevention of Keloid Recurrence. Plastic and Reconstructive Surgery, 2019, 143, 490-494.	0.7	30
69	Functional Parsing of Driver Mutations in the Colorectal Cancer Genome Reveals Numerous Suppressors of Anchorage-Independent Growth. Cancer Research, 2011, 71, 4359-4365.	0.4	27
70	Decreasing initial telomere length in humans intergenerationally understates ageâ€associated telomere shortening. Aging Cell, 2015, 14, 669-677.	3.0	24
71	Generation of digoxigenin-incorporated probes to enhance DNA detection sensitivity. BioTechniques, 2016, 60, 306-309.	0.8	24
72	Monoclonal antimyogenin antibodies define epitopes outside the bHLH domain where binding interferes with protein-protein and protein-DNA interactions., 1996, 19, 131-138.		23

#	Article	IF	CITATIONS
73	Ageing and Cancer: The Telomere and Telomerase Connection. Novartis Foundation Symposium, 2008, , 116-129.	1.2	23
74	Neuromuscular electrical stimulation promotes development in mice of mature human muscle from immortalized human myoblasts. Skeletal Muscle, 2015, 6, 4.	1.9	23
75	Identification of novel driver tumor suppressors through functional interrogation of putative passenger mutations in colorectal cancer. International Journal of Cancer, 2013, 132, 732-737.	2.3	19
76	Single-Strand DNA-Binding Protein SSB1 Facilitates TERT Recruitment to Telomeres and Maintains Telomere G-Overhangs. Cancer Research, 2015, 75, 858-869.	0.4	19
77	Reconstituting Mouse Lungs with Conditionally Reprogrammed Human Bronchial Epithelial Cells. Tissue Engineering - Part A, 2018, 24, 559-568.	1.6	18
78	Perifosine as a potential novel anti-telomerase therapy. Oncotarget, 2015, 6, 21816-21826.	0.8	18
79	ddTRAP: A Method for Sensitive and Precise Quantification of Telomerase Activity. Methods in Molecular Biology, 2018, 1768, 513-529.	0.4	16
80	CDDO-Me Protects Normal Lung and Breast Epithelial Cells but Not Cancer Cells from Radiation. PLoS ONE, 2014, 9, e115600.	1.1	15
81	Truncated Adenomatous Polyposis Coli Mutation Induces Asef-Activated Golgi Fragmentation. Molecular and Cellular Biology, 2018, 38, .	1.1	14
82	Telomerase Assays in the Diagnosis and Prognosis of Cancer. Novartis Foundation Symposium, 1997, 211, 148-159.	1.2	12
83	RNAi screening of the human colorectal cancer genome identifies multifunctional tumor suppressors regulating epithelial cell invasion. Cell Research, 2012, 22, 1605-1608.	5.7	7
84	Telomerase activity in human germline and embryonic tissues and cells., 1996, 18, 173.		7
85	Catalysis-dependent inactivation of human telomerase and its reactivation by intracellular telomerase-activating factors (iTAFs). Journal of Biological Chemistry, 2019, 294, 11579-11596.	1.6	6
86	2D gel electrophoresis reveals dynamics of t-loop formation during the cell cycle and t-loop in maintenance regulated by heterochromatin state. Journal of Biological Chemistry, 2019, 294, 6645-6656.	1.6	5
87	Facioscapulohumeral muscular dystrophy. Rare Diseases (Austin, Tex), 2013, 1, e26142.	1.8	2
88	Mechanisms of escaping cellular senescence. Radiation Oncology Investigations, 1995, 3, 284-289.	1.3	1
89	Telomerase: target for cancer treatment. , 0, , 442-451.		0
90	Telomere G-Rich Overhang Length Measurement: DSN Method. Methods in Molecular Biology, 2017, 1587, 55-62.	0.4	0

#	Article	IF	CITATIONS
91	Telomere Terminal G/C Strand Synthesis: Measuring Telomerase Action and C-Rich Fill-In. Methods in Molecular Biology, 2017, 1587, 71-82.	0.4	0
92	Immortalized keratinocytes that overexpress Hâ€ras produce an invasive, randomized epithelium in organotypic culture. FASEB Journal, 2008, 22, 978.3.	0.2	0
93	FOXP1 Interacts with MyoD to Repress its Transcription and Myoblast Conversion. Journal of Cellular Signaling, 2021, 2, 9-26.	0.5	0