List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8797542/publications.pdf Version: 2024-02-01

MIHEELIM

#	Article	IF	CITATIONS
1	Circularly Polarized Light Can Override and Amplify Asymmetry in Supramolecular Helices. Journal of the American Chemical Society, 2022, 144, 2657-2666.	13.7	20
2	Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β. Nature Chemistry, 2022, 14, 1021-1030.	13.6	7
3	A Glycosylated Prodrug to Attenuate Neuroinflammation and Improve Cognitive Deficits in Alzheimer's Disease Transgenic Mice. Molecular Pharmaceutics, 2021, 18, 101-112.	4.6	8
4	Metalloneurochemistry. , 2021, , 994-1015.		0
5	Impact of sphingosine and acetylsphingosines on the aggregation and toxicity of metal-free and metal-treated amyloid-β. Chemical Science, 2021, 12, 2456-2466.	7.4	9
6	A multi-functional picolinohydrazide-based chemosensor for colorimetric detection of iron and dual responsive detection of hypochlorite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 245, 118899.	3.9	14
7	Distinct impact of glycation towards the aggregation and toxicity of murine and human amyloid-β. Chemical Communications, 2021, 57, 7637-7640.	4.1	2
8	Celebrating the 75 th Anniversary of the Korean Chemical Society. Chemical Communications, 2021, 57, 10660-10660.	4.1	0
9	Complexation of <i>C</i> -Functionalized Cyclams with Copper(II) and Zinc(II): Similarities and Changes When Compared to Parent Cyclam Analogues. Inorganic Chemistry, 2021, 60, 10857-10872.	4.0	10
10	Redox Properties of Small Molecules Essential for Multiple Reactivities with Pathological Factors in Alzheimer's Disease. Bulletin of the Korean Chemical Society, 2021, 42, 1272-1280.	1.9	8
11	Drug repurposing: small molecules against Cu(II)–amyloid-β and free radicals. Journal of Inorganic Biochemistry, 2021, 224, 111592.	3.5	5
12	Reactivity of Flavonoids Containing a Catechol or Pyrogallol Moiety with Metalâ€Free and Metalâ€Associated Amyloidâ€Ĥ². Bulletin of the Korean Chemical Society, 2021, 42, 17-24.	1.9	10
13	Mechanistic Insight into the Design of Chemical Tools to Control Multiple Pathogenic Features in Alzheimer's Disease. Accounts of Chemical Research, 2021, 54, 3930-3940.	15.6	33
14	Synaptic Copper, Amyloid-β, and Neurotransmitters in Alzheimer's Disease. Biochemistry, 2020, 59, 15-17.	2.5	26
15	A rhodanine-based fluorescent chemosensor for sensing Zn2+ and Cd2+: Applications to water sample and cell imaging. Inorganica Chimica Acta, 2020, 513, 119936.	2.4	17
16	Key Physicochemical and Biological Factors of the Phase Behavior of Tau. CheM, 2020, 6, 2924-2963.	11.7	13
17	Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids. Inorganic Chemistry, 2020, 59, 17573-17582.	4.0	19
18	Ratiometric fluorescence In3+ sensing via In3+-triggered tautomerization: Its applications to water samples, live cells and zebrafish. Dyes and Pigments, 2020, 183, 108704.	3.7	8

#	Article	IF	CITATIONS
19	Mechanistic insight into hydroxamate transfer reaction mimicking the inhibition of zinc-containing enzymes. Chemical Science, 2020, 11, 9017-9021.	7.4	2
20	Multiple reactivities of flavonoids towards pathological elements in Alzheimer's disease: structure–activity relationship. Chemical Science, 2020, 11, 10243-10254.	7.4	22
21	Reactivities of cyclam derivatives with metal–amyloid-β. Inorganic Chemistry Frontiers, 2020, 7, 4222-4238.	6.0	10
22	A thiourea-based fluorescent chemosensor for bioimaging hypochlorite. Journal of Industrial and Engineering Chemistry, 2020, 89, 436-441.	5.8	19
23	Mechanistic approaches for chemically modifying the coordination sphere of copper–amyloid-β complexes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5160-5167.	7.1	24
24	Minimalistic Principles for Designing Small Molecules with Multiple Reactivities against Pathological Factors in Dementia. Journal of the American Chemical Society, 2020, 142, 8183-8193.	13.7	23
25	Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chemical Reviews, 2019, 119, 1221-1322.	47.7	360
26	Diverse Structural Conversion and Aggregation Pathways of Alzheimer's Amyloid-β (1–40). ACS Nano, 2019, 13, 8766-8783.	14.6	33
27	The central role of the d-block metals in the periodic table. Dalton Transactions, 2019, 48, 9405-9407.	3.3	2
28	Monitoring metal–amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening. Chemical Science, 2019, 10, 1000-1007.	7.4	13
29	Metals in Biology: From Metallomics to Trafficking. Inorganic Chemistry, 2019, 58, 13505-13508.	4.0	17
30	<i>N</i> , <i>N</i> ′-Diacetyl- <i>p</i> -phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer's disease transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23426-23436.	7.1	34
31	A multiple target chemosensor for the sequential fluorescence detection of Zn2+ and S2â^' and the colorimetric detection of Fe3+/2+ in aqueous media and living cells. Photochemical and Photobiological Sciences, 2019, 18, 166-176.	2.9	22
32	A dual-response sensor based on NBD for the highly selective determination of sulfide in living cells and zebrafish. New Journal of Chemistry, 2019, 43, 4029-4035.	2.8	13
33	Intertwined Pathologies of Amyloid-β and Metal Ions in Alzheimer's Disease: Metal–Amyloid-β. Chemistry Letters, 2019, 48, 951-960.	1.3	14
34	Chemical strategies to modify amyloidogenic peptides using iridium(<scp>iii</scp>) complexes: coordination and photo-induced oxidation. Chemical Science, 2019, 10, 6855-6862.	7.4	20
35	Orobol: An Isoflavone Exhibiting Regulatory Multifunctionality against Four Pathological Features of Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 3386-3390.	3.5	18
36	Tunable regulatory activities of 1,10-phenanthroline derivatives towards acid sphingomyelinase and Zn(<scp>ii</scp>)–amyloid-β. Chemical Communications, 2019, 55, 5847-5850.	4.1	5

#	Article	IF	CITATIONS
37	Fluorescent determination of zinc by a quinoline-based chemosensor in aqueous media and zebrafish. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 74-82.	3.9	45
38	Relay detection of Zn2+ and S2â~' by a quinoline-based fluorescent chemosensor in aqueous media and zebrafish. Dyes and Pigments, 2019, 165, 264-272.	3.7	30
39	Metal ions and degenerative diseases. Journal of Biological Inorganic Chemistry, 2019, 24, 1137-1139.	2.6	12
40	A Novel Thiophene-Based Fluorescent Chemosensor for the Detection of Zn2+ and CNâ^': Imaging Applications in Live Cells and Zebrafish. Sensors, 2019, 19, 5458.	3.8	18
41	Strategies Employing Transition Metal Complexes To Modulate Amyloid-β Aggregation. Inorganic Chemistry, 2019, 58, 8-17.	4.0	43
42	A fluorescent and colorimetric Schiff base chemosensor for the detection of Zn2+ and Cu2+: Application in live cell imaging and colorimetric test kit. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 34-43.	3.9	33
43	A near-infrared fluorescent probe for amyloid-β aggregates. Dyes and Pigments, 2019, 162, 97-103.	3.7	10
44	A novel "off-on―type fluorescent chemosensor for detection of Zn2+ and its zinc complex for "on-off―fluorescent sensing of sulfide in aqueous solution, in vitro and in vivo. Sensors and Actuators B: Chemical, 2018, 267, 58-69.	7.8	59
45	A water-soluble fluorescence chemosensor for the sequential detection of Zn2+ and pyrophosphate in living cells and zebrafish. Dyes and Pigments, 2018, 152, 131-138.	3.7	55
46	Tuning Structures and Properties for Developing Novel Chemical Tools toward Distinct Pathogenic Elements in Alzheimer's Disease. ACS Chemical Neuroscience, 2018, 9, 800-808.	3.5	25
47	Fluorescent Sensor for Sequentially Monitoring Zinc(II) and Cyanide Anion in Near-Perfect Aqueous Media. Industrial & Engineering Chemistry Research, 2018, 57, 54-62.	3.7	38
48	Link of impaired metal ion homeostasis to mitochondrial dysfunction in neurons. Current Opinion in Chemical Biology, 2018, 43, 8-14.	6.1	55
49	A highly sensitive and selective fluorescent chemosensor for the sequential recognition of Zn2+ and S2â' in living cells and aqueous media. Sensors and Actuators B: Chemical, 2018, 255, 3108-3116.	7.8	37
50	Advanced Electron Paramagnetic Resonance Studies of a Ternary Complex of Copper, Amyloid-β, and a Chemical Regulator. Inorganic Chemistry, 2018, 57, 12665-12670.	4.0	3
51	Detection of Zinc(II) by a Fluorescence Chemosensor Based on Benzofuran in Aqueous Media and Live Cells. Bulletin of the Korean Chemical Society, 2018, 39, 1373-1379.	1.9	6
52	Regulatory Activities of Dopamine and Its Derivatives toward Metal-Free and Metal-Induced Amyloid-β Aggregation, Oxidative Stress, and Inflammation in Alzheimer's Disease. ACS Chemical Neuroscience, 2018, 9, 2655-2666.	3.5	62
53	Tailoring Hydrophobic Interactions between Probes and Amyloid-β Peptides for Fluorescent Monitoring of Amyloid-β Aggregation. ACS Omega, 2018, 3, 5141-5154.	3.5	7
54	Calprotectin influences the aggregation of metal-free and metal-bound amyloid-β by direct interaction. Metallomics, 2018, 10, 1116-1127.	2.4	10

#	Article	IF	CITATIONS
55	A highly selective turn-on chemosensor for Zn2+ in aqueous media and living cells. Sensors and Actuators B: Chemical, 2017, 244, 1045-1053.	7.8	33
56	Mechanistic Insights into Tunable Metal-Mediated Hydrolysis of Amyloid-β Peptides. Journal of the American Chemical Society, 2017, 139, 2234-2244.	13.7	55
57	Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. Journal of Biological Chemistry, 2017, 292, 4638-4650.	3.4	145
58	A zinc fluorescent sensor used to detect mercury (II) and hydrosulfide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 178, 203-211.	3.9	14
59	Strategic Design of 2,2′-Bipyridine Derivatives to Modulate Metal–Amyloid-β Aggregation. Inorganic Chemistry, 2017, 56, 6695-6705.	4.0	16
60	Colorimetric detection of Fe3+ and Fe2+ and sequential fluorescent detection of Al3+ and pyrophosphate by an imidazole-based chemosensor in a near-perfect aqueous solution. Dyes and Pigments, 2017, 139, 136-147.	3.7	99
61	Stereochemistry of metal tetramethylcyclam complexes directed by an unexpected anion effect. Dalton Transactions, 2017, 46, 13166-13170.	3.3	10
62	A single fluorescent chemosensor for multiple targets of Cu ²⁺ , Fe ^{2+/3+} and Al ³⁺ in living cells and a near-perfect aqueous solution. RSC Advances, 2017, 7, 28723-28732.	3.6	38
63	Thiophene and diethylaminophenol-based "turn-on―fluorescence chemosensor for detection of Al3+ and Fâ^' in a near-perfect aqueous solution. Tetrahedron, 2017, 73, 2690-2697.	1.9	45
64	Structural and Mechanistic Insights into Development of Chemical Tools to Control Individual and Interâ€Related Pathological Features in Alzheimer's Disease. Chemistry - A European Journal, 2017, 23, 2706-2715.	3.3	25
65	Genetically Encodable Bacterial Flavin Transferase for Fluorogenic Protein Modification in Mammalian Cells. ACS Synthetic Biology, 2017, 6, 667-677.	3.8	7
66	Molecular Insights into Human Serum Albumin as a Receptor of Amyloid-β in the Extracellular Region. Journal of the American Chemical Society, 2017, 139, 15437-15445.	13.7	61
67	Single fluorescent chemosensor for multiple targets: sequential detection of Al ³⁺ and pyrophosphate and selective detection of F ^{â^'} in near-perfect aqueous solution. New Journal of Chemistry, 2017, 41, 15590-15600.	2.8	43
68	Minor Structural Variations of Small Molecules Tune Regulatory Activities toward Pathological Factors in Alzheimer's Disease. ChemMedChem, 2017, 12, 1828-1838.	3.2	13
69	Towards an understanding of amyloid- \hat{l}^2 oligomers: characterization, toxicity mechanisms, and inhibitors. Chemical Society Reviews, 2017, 46, 310-323.	38.1	405
70	An Iridium(III) Complex as a Photoactivatable Tool for Oxidation of Amyloidogenic Peptides with Subsequent Modulation of Peptide Aggregation. Chemistry - A European Journal, 2017, 23, 1645-1653.	3.3	33
71	Multi-target-directed phenol–triazole ligands as therapeutic agents for Alzheimer's disease. Chemical Science, 2017, 8, 5636-5643.	7.4	79
72	Structure and assembly mechanisms of toxic human islet amyloid polypeptide oligomers associated with copper. Chemical Science, 2016, 7, 5398-5406.	7.4	38

Мі Нее Lim

#	Article	IF	CITATIONS
73	A fluorescent chemosensor for Al3+ based on julolidine and tryptophan moieties. Tetrahedron, 2016, 72, 1998-2005.	1.9	28
74	Multifunctional quinoline-triazole derivatives as potential modulators of amyloid-β peptide aggregation. Journal of Inorganic Biochemistry, 2016, 158, 131-138.	3.5	25
75	Importance of the Dimethylamino Functionality on a Multifunctional Framework for Regulating Metals, Amyloid-β, and Oxidative Stress in Alzheimer's Disease. Inorganic Chemistry, 2016, 55, 5000-5013.	4.0	19
76	Endoplasmic Reticulum-Localized Iridium(III) Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications. Journal of the American Chemical Society, 2016, 138, 10968-10977.	13.7	330
77	A highly selective fluorescent sensor for the detection of Al ³⁺ and CN ^{â^'} in aqueous solution: biological applications and DFT calculations. New Journal of Chemistry, 2016, 40, 8918-8927.	2.8	34
78	Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease. Nature Communications, 2016, 7, 13115.	12.8	80
79	Biophysical insights into the membrane interaction of the core amyloid-forming Aβ ₄₀ fragment K16–K28 and its role in the pathogenesis of Alzheimer's disease. Physical Chemistry Chemical Physics, 2016, 18, 16890-16901.	2.8	16
80	<i>In Cellulo</i> Mapping of Subcellular Localized Bilirubin. ACS Chemical Biology, 2016, 11, 2177-2185.	3.4	21
81	Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-1 ² aggregation. Inorganic Chemistry Frontiers, 2016, 3, 381-392.	6.0	28
82	A PET-based fluorometric chemosensor for the determination of mercury(<scp>ii</scp>) and pH, and hydrolysis reaction-based colorimetric detection of hydrogen sulfide. Dalton Transactions, 2016, 45, 5700-5712.	3.3	44
83	Amyloid-β adopts a conserved, partially folded structure upon binding to zwitterionic lipid bilayers prior to amyloid formation. Chemical Communications, 2016, 52, 882-885.	4.1	66
84	Reactivity of Metal-Free and Metal-Associated Amyloid-Î ² with Glycosylated Polyphenols and Their Esterified Derivatives. Scientific Reports, 2015, 5, 17842.	3.3	44
85	Tools of the Trade: Investigations into Design Strategies of Small Molecules to Target Components in Alzheimer's Disease. ChemBioChem, 2015, 16, 887-898.	2.6	34
86	Editorial overview: Bioinorganic chemistry: Bioinorganic catalysis for renewable energy. Current Opinion in Chemical Biology, 2015, 25, vii-viii.	6.1	0
87	A rationally designed small molecule for identifying an in vivo link between metal–amyloid-β complexes and the pathogenesis of Alzheimer's disease. Chemical Science, 2015, 6, 1879-1886.	7.4	60
88	A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms. Journal of the American Chemical Society, 2015, 137, 14785-14797.	13.7	65
89	Chelation-induced diradical formation as an approach to modulation of the amyloid-Î ² aggregation pathway. Chemical Science, 2015, 6, 1018-1026.	7.4	15
90	Inhibitory Activity of Curcumin Derivatives Towards Metal-Free and Metal-Induced Amyloid-β Aggregation. Current Alzheimer Research, 2015, 12, 415-423.	1.4	35

#	Article	IF	CITATIONS
91	Abnormal metal levels in the primary visual pathway of the DBA/2J mouse model of glaucoma. BioMetals, 2014, 27, 1291-1301.	4.1	16
92	A small molecule that displays marked reactivity toward copper– versus zinc–amyloid-β implicated in Alzheimer's disease. Chemical Communications, 2014, 50, 5301-5303.	4.1	49
93	Rational Design of a Structural Framework with Potential Use to Develop Chemical Reagents That Target and Modulate Multiple Facets of Alzheimer's Disease. Journal of the American Chemical Society, 2014, 136, 299-310.	13.7	166
94	Methyl Yellow: A Potential Drug Scaffold for Parkinson's Disease. ChemBioChem, 2014, 15, 1591-1598.	2.6	7
95	Interaction and reactivity of synthetic aminoisoflavones with metal-free and metal-associated amyloid-Î ² . Chemical Science, 2014, 5, 4851-4862.	7.4	50
96	The Ongoing Search for Small Molecules to Study Metal-Associated Amyloid-β Species in Alzheimer's Disease. Accounts of Chemical Research, 2014, 47, 2475-2482.	15.6	149
97	Molecular medicine and neurodegenerative diseases. Chemical Society Reviews, 2014, 43, 6668-6671.	38.1	7
98	Cholesterol and metal ions in Alzheimer's disease. Chemical Society Reviews, 2014, 43, 6672-6682.	38.1	82
99	A novel hybrid of 6-chlorotacrine and metal–amyloid-β modulator for inhibition of acetylcholinesterase and metal-induced amyloid-β aggregation. Chemical Science, 2013, 4, 4137.	7.4	48
100	Structural Characterization and Inhibition of Toxic Amyloid-β Oligomeric Intermediates. Biophysical Journal, 2013, 105, 287-288.	0.5	36
101	Amyloid-β–neuropeptide interactions assessed by ion mobility-mass spectrometry. Physical Chemistry Chemical Physics, 2013, 15, 8952.	2.8	30
102	Untangling Amyloid-β, Tau, and Metals in Alzheimer's Disease. ACS Chemical Biology, 2013, 8, 856-865.	3.4	329
103	Insights into antiamyloidogenic properties of the green tea extract (â^')-epigallocatechin-3-gallate toward metal-associated amyloid-l² species. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3743-3748.	7.1	221
104	Tuning Reactivity of Diphenylpropynone Derivatives with Metal-Associated Amyloid-β Species via Structural Modifications. Inorganic Chemistry, 2013, 52, 8121-8130.	4.0	29
105	Medicinal inorganic chemistry: a web themed issue. Chemical Communications, 2013, 49, 5910.	4.1	3
106	Dual-function triazole–pyridine derivatives as inhibitors of metal-induced amyloid-β aggregation. Metallomics, 2012, 4, 910.	2.4	58
107	Exploring the reactivity of flavonoid compounds with metal-associated amyloid-β species. Dalton Transactions, 2012, 41, 6558.	3.3	30
108	Reactivity of Diphenylpropynone Derivatives Toward Metal-Associated Amyloid-β Species. Inorganic Chemistry, 2012, 51, 12959-12967.	4.0	36

#	Article	IF	CITATIONS
109	Luminescent Properties of Ruthenium(II) Complexes with Sterically Expansive Ligands Bound to DNA Defects. Inorganic Chemistry, 2012, 51, 12511-12520.	4.0	78
110	Misfolded proteins in Alzheimer's disease and type II diabetes. Chemical Society Reviews, 2012, 41, 608-621.	38.1	335
111	The Reaction of a Highâ€Valent Nonheme Oxoiron(IV) Intermediate with Hydrogen Peroxide. Angewandte Chemie - International Edition, 2012, 51, 5376-5380.	13.8	20
112	Metal-associated amyloid-β species in Alzheimer's disease. Current Opinion in Chemical Biology, 2012, 16, 67-73.	6.1	230
113	Characterization of pyridinylimine and pyridinylmethylamine derivatives and their corresponding metal complexes. Inorganica Chimica Acta, 2012, 380, 261-268.	2.4	17
114	Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex. Nature, 2011, 478, 502-505.	27.8	292
115	Identification of multifunctional small molecule-based reversible monoamine oxidase inhibitors. MedChemComm, 2011, 2, 1099.	3.4	17
116	Development of Bifunctional Stilbene Derivatives for Targeting and Modulating Metal-Amyloid-β Species. Inorganic Chemistry, 2011, 50, 10724-10734.	4.0	75
117	Synthesis and characterization of IMPY derivatives that regulate metal-induced amyloid-β aggregation. Metallomics, 2011, 3, 284.	2.4	36
118	Recent Development of Bifunctional Small Molecules to Study Metal-Amyloid-β Species in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-9.	2.0	35
119	Myricetin: A Naturally Occurring Regulator of Metalâ€Induced Amyloidâ€Î² Aggregation and Neurotoxicity. ChemBioChem, 2011, 12, 1198-1201.	2.6	81
120	Design of small molecules that target metal-AÎ ² species and regulate metal-induced AÎ ² aggregation and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21990-21995.	7.1	253
121	Small Molecule Modulators of Copper-Induced AÎ ² Aggregation. Journal of the American Chemical Society, 2009, 131, 16663-16665.	13.7	189
122	Effects of Clioquinol on Metal-Triggered Amyloid-β Aggregation Revisited. Inorganic Chemistry, 2009, 48, 9596-9598.	4.0	93
123	Sensitivity of Ru(bpy) ₂ dppz ²⁺ Luminescence to DNA Defects. Inorganic Chemistry, 2009, 48, 5392-5397.	4.0	118
124	DNA Strand Cleavage near a CC Mismatch Directed by a Metalloinsertor. Inorganic Chemistry, 2007, 46, 9528-9530.	4.0	17
125	Metal-Based Turn-On Fluorescent Probes for Sensing Nitric Oxide. Accounts of Chemical Research, 2007, 40, 41-51.	15.6	239
126	Preparation of a copper-based fluorescent probe for nitric oxide and its use in mammalian cultured cells. Nature Protocols, 2007, 2, 408-415.	12.0	24

#	Article	IF	CITATIONS
127	Fluorescent Nitric Oxide Detection by Copper Complexes Bearing Anthracenyl and Dansyl Fluorophore Ligands. Inorganic Chemistry, 2006, 45, 8980-8989.	4.0	62
128	Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nature Chemical Biology, 2006, 2, 375-380.	8.0	334
129	Direct Nitric Oxide Detection in Aqueous Solution by Copper(II) Fluorescein Complexes. Journal of the American Chemical Society, 2006, 128, 14364-14373.	13.7	257
130	Nitric Oxide-Induced Fluorescence Enhancement by Displacement of Dansylated Ligands from Cobalt. ChemBioChem, 2006, 7, 1571-1576.	2.6	34
131	Synthesis of Isomerically Pure Carboxylate- and Sulfonate-Substituted Xanthene Fluorophores ChemInform, 2005, 36, no.	0.0	0
132	Parallel mechanistic studies on the counterion effect of manganese salen and porphyrin complexes on olefin epoxidation by iodosylarenes. Journal of Inorganic Biochemistry, 2005, 99, 424-431.	3.5	38
133	Synthesis of isomerically pure carboxylate- and sulfonate-substituted xanthene fluorophores. Tetrahedron, 2005, 61, 3097-3105.	1.9	49
134	Fluorescence-based Nitric Oxide Detection. , 2005, , 163-188.		19
135	Copper Complexes for Fluorescence-Based NO Detection in Aqueous Solution. Journal of the American Chemical Society, 2005, 127, 12170-12171.	13.7	125
136	Conjugated Polymer-Based Fluorescence Turn-On Sensor for Nitric Oxide. Organic Letters, 2005, 7, 3573-3575.	4.6	106
137	Self-hydroxylation of perbenzoic acids at a nonheme iron(ii) center. Chemical Communications, 2005, , 5644.	4.1	59
138	Dirhodium Tetracarboxylate Scaffolds as Reversible Fluorescence-Based Nitric Oxide Sensors. Journal of the American Chemical Society, 2004, 126, 4972-4978.	13.7	135
139	Structural Insights into Nonheme Alkylperoxoiron(III) and Oxoiron(IV) Intermediates by X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2004, 126, 16750-16761.	13.7	149
140	Fluorescence-Based Nitric Oxide Detection by Ruthenium Porphyrin Fluorophore Complexes. Inorganic Chemistry, 2004, 43, 6366-6370.	4.0	79
141	Reversible Formation of Iodosylbenzene–Iron Porphyrin Intermediates in the Reaction of Oxoiron(IV) Porphyrinï€-Cation Radicals and Iodobenzene. Angewandte Chemie - International Edition, 2003, 42, 109-111.	13.8	91
142	Crystallographic and Spectroscopic Characterization of a Nonheme Fe(IV)&cjs0811O Complex. Science, 2003, 299, 1037-1039.	12.6	870
143	First Direct Evidence for Stereospecific Olefin Epoxidation and Alkane Hydroxylation by an Oxoiron(IV) Porphyrin Complex. Journal of the American Chemical Society, 2003, 125, 14674-14675.	13.7	146
144	An FeIVO complex of a tetradentate tripodal nonheme ligand. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3665-3670.	7.1	322

Мі Нее Lim

#	Article	IF	CITATIONS
145	Anionic Ligand Effect on the Nature of Epoxidizing Intermediates in Iron Porphyrin Complex-Catalyzed Epoxidation Reactions. Inorganic Chemistry, 2002, 41, 3647-3652.	4.0	124
146	Isolation of an Oxomanganese(V) Porphyrin Intermediate in the Reaction of a Manganese(III) Porphyrin Complex and H2O2 in Aqueous Solution. Chemistry - A European Journal, 2002, 8, 2067-2071.	3.3	135
147	Methoxy[meso-5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrinato]iron(III), [Fe(TDFPP)(OCH3)]. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 556-557.	0.4	2
148	Remarkable Anionic Axial Ligand Effects of Iron(III) Porphyrin Complexes on the Catalytic Oxygenations of Hydrocarbons by H2O2 and the Formation of Oxoiron(IV) Porphyrin Intermediates bym-Chloroperoxybenzoic Acid. Angewandte Chemie - International Edition, 2000, 39, 3646-3649.	13.8	101
149	Temperature effect on the epoxidation of olefins by an iron(iii) porphyrin complex and tert-alkyl hydroperoxides. Chemical Communications, 2000, , 1787-1788.	4.1	10
150	Effect of Anionic Axial Ligands on the Formation of Oxoiron(IV) Porphyrin Intermediates. Inorganic Chemistry, 2000, 39, 5572-5575.	4.0	79
151	Evidence for the Participation of Two Distinct Reactive Intermediates in Iron(III) Porphyrin Complex-Catalyzed Epoxidation Reactions. Journal of the American Chemical Society, 2000, 122, 6641-6647.	13.7	150
152	Participation of Two Distinct Hydroxylating Intermediates in Iron(III) Porphyrin Complex-Catalyzed Hydroxylation of Alkanes. Journal of the American Chemical Society, 2000, 122, 10805-10809.	13.7	104
153	Biomimetic Alkane Hydroxylations by an Iron(III) Porphyrin Complex with H2O2and by a High-Valent Iron(IV) Oxo Porphyrin Cation Radical Complex. Inorganic Chemistry, 1999, 38, 3238-3240.	4.0	76
154	Hydroxylation of Aliphatic Hydrocarbons withm-Chloroperbenzoic Acid Catalyzed by Electron-Deficient Iron(III) Porphyrin Complexes. Bulletin of the Chemical Society of Japan, 1999, 72, 707-713.	3.2	29
155	Copper(<scp>ii</scp>) and zinc(<scp>ii</scp>) complexation with <i>N</i> -ethylene hydroxycyclams and consequences on the macrocyclic backbone configuration. Dalton Transactions, 0, , . 	3.3	5
156	Dual Effects of Presynaptic Membrane Mimetics on α-Synuclein Amyloid Aggregation. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2