Anna M Roman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/87975/anna-m-romani-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

113
papers

4,910
citations

h-index

67
g-index

115
ext. papers

5,614
ext. citations

4.7
avg, IF

L-index

#	Paper	IF	Citations
113	The Iberian rivers 2022 , 181-224		1
112	Litter decomposition of three halophytes in a Mediterranean salt marsh: Relevance of litter quality, microbial activity and microhabitat <i>Science of the Total Environment</i> , 2022 , 155743	10.2	0
111	Temperature-induced changes in biofilm organic matter utilization in arctic streams (Disko Island, Greenland). <i>Polar Biology</i> , 2021 , 44, 2177-2188	2	O
110	Different microbial functioning in natural versus man-made Mediterranean coastal lagoons in relation to season. <i>Estuarine, Coastal and Shelf Science</i> , 2021 , 259, 107434	2.9	2
109	Legacy of Summer Drought on Autumnal Leaf Litter Processing in a Temporary Mediterranean Stream. <i>Ecosystems</i> , 2020 , 23, 989-1003	3.9	13
108	River biofilms adapted to anthropogenic disturbances are more resistant to WWTP inputs. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	1
107	A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics. <i>Science of the Total Environment</i> , 2019 , 669, 559-569	10.2	17
106	Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls. <i>Microbial Ecology</i> , 2019 , 78, 539-554	4.4	13
105	Responses of microbial activity in hyporheic pore water to biogeochemical changes in a drying headwater stream. <i>Freshwater Biology</i> , 2019 , 64, 735-749	3.1	10
104	The synergistic effect of enzymatic detergents on biofilm cleaning from different surfaces. <i>Biofouling</i> , 2019 , 35, 883-899	3.3	7
103	Interplay between sediment properties and stream flow conditions influences surface sediment organic matter and microbial biomass in a Mediterranean river. <i>Hydrobiologia</i> , 2019 , 828, 199-212	2.4	4
102	A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. <i>Earth-Science Reviews</i> , 2019 , 188, 441-453	10.2	36
101	Bilayer Infiltration System Combines Benefits from Both Coarse and Fine Sands Promoting Nutrient Accumulation in Sediments and Increasing Removal Rates. <i>Environmental Science & Environmental Scienc</i>	10.3	7
100	Linking biofilm spatial structure to real-time microscopic oxygen decay imaging. <i>Biofouling</i> , 2018 , 34, 200-211	3.3	5
99	Deconvolution model to resolve cytometric microbial community patterns in flowing waters. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 194-200	4.6	24
98	Responses of microbially driven leaf litter decomposition to stream nutrients depend on litter quality. <i>Hydrobiologia</i> , 2018 , 806, 333-346	2.4	13
97	Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. <i>Science of the Total Environment</i> , 2018 , 621, 486-496	10.2	24

(2015-2018)

long-term drought. Freshwater Biology, 2018 , 64, 306	3.1	13
Biochemical quality of basal resources in a forested stream: effects of nutrient enrichment. <i>Aquatic Sciences</i> , 2017 , 79, 99-112	2.5	3
Biofilm phosphorus uptake capacity as a tool for the assessment of pollutant effects in river ecosystems. <i>Ecotoxicology</i> , 2017 , 26, 271-282	2.9	11
Warmer night-time temperature promotes microbial heterotrophic activity and modifies stream sediment community. <i>Global Change Biology</i> , 2017 , 23, 3825-3837	11.4	22
Interaction between Physical Heterogeneity and Microbial Processes in Subsurface Sediments: A Laboratory-Scale Column Experiment. <i>Environmental Science & Environmental Scien</i>	10.3	23
Quality and reactivity of dissolved organic matter in a Mediterranean river across hydrological and spatial gradients. <i>Science of the Total Environment</i> , 2017 , 599-600, 1802-1812	10.2	35
A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. <i>Water Resources Research</i> , 2017 , 53, 93-109	5.4	13
Responses of microbial decomposers to drought in streams may depend on the environmental context. <i>Environmental Microbiology Reports</i> , 2017 , 9, 756-765	3.7	16
The Biota of Intermittent Rivers and Ephemeral Streams: Prokaryotes, Fungi, and Protozoans 2017 , 161	I-188	21
The effects of sediment depth and oxygen concentration on the use of organic matter: An experimental study using an infiltration sediment tank. <i>Science of the Total Environment</i> , 2016 , 540, 20-	3 ^{10.2}	31
Hydrological conditions control in situ DOM retention and release along a Mediterranean river. <i>Water Research</i> , 2016 , 99, 33-45	12.5	22
Influence of grazing on triclosan toxicity to stream periphyton. Freshwater Biology, 2016, 61, 2002-2012	2 3.1	17
Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. <i>FEMS Microbiology Ecology</i> , 2016 , 92,	4.3	31
The ecology and biogeochemistry of stream biofilms. <i>Nature Reviews Microbiology</i> , 2016 , 14, 251-63	22.2	494
Fluvial biofilms from upper and lower river reaches respond differently to wastewater treatment plant inputs. <i>Hydrobiologia</i> , 2016 , 765, 169-183	2.4	6
Microbes in Aquatic Biofilms Under the Effect of Changing Climate 2016 , 83-96		4
Sediment microbial communities rely on different dissolved organic matter sources along a Mediterranean river continuum. <i>Limnology and Oceanography</i> , 2016 , 61, 1389-1405	4.8	39
Arsenic toxicity effects on microbial communities and nutrient cycling in indoor experimental channels mimicking a fluvial system. <i>Aquatic Toxicology</i> , 2015 , 166, 72-82	5.1	13
	Biochemical quality of basal resources in a forested stream: effects of nutrient enrichment. <i>Aquatic Sciences</i> , 2017, 79, 99-112 Biofilm phosphorus uptake capacity as a tool for the assessment of pollutant effects in river ecosystems. <i>Ecotoxicology</i> , 2017, 26, 271-282 Warmer night-time temperature promotes microbial heterotrophic activity and modifies stream sediment community. <i>Global Change Biology</i> , 2017, 23, 3825-3837 Interaction between Physical Heterogeneity and Microbial Processes in Subsurface Sediments: A Laboratory-Scale Column Experiment. <i>Environmental Science & Designation</i> , 2017, 51, 6110-6119 Quality and reactivity of dissolved organic matter in a Mediterranean river across hydrological and spatial gradients. <i>Science of the Total Environment</i> , 2017, 599-600, 1802-1812 A mechanistic model (BCC-PSCICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. <i>Water Resources Research</i> , 2017, 53, 93-109 Responses of microbial decomposers to drought in streams may depend on the environmental context. <i>Environmental Microbiology Reports</i> , 2017, 9, 756-765 The Biota of Intermittent Rivers and Ephemeral Streams: Prokaryotes, Fungi, and Protozoans 2017, 16: The effects of sediment depth and oxygen concentration on the use of organic matter: An experimental study using an infiltration sediment tank. <i>Science of the Total Environment</i> , 2016, 540, 20-Hydrological conditions control in situ DOM retention and release along a Mediterranean river. <i>Water Research</i> , 2016, 99, 33-45 Influence of grazing on triclosan toxicity to stream periphyton. <i>Freshwater Biology</i> , 2016, 61, 2002-2013. Influence of grazing on triclosan toxicity to stream periphyton. <i>Freshwater Biology</i> , 2016, 61, 2002-2013. The ecology and biogeochemistry of stream biofilms. <i>Nature Reviews Microbiology</i> , 2016, 61, 2002-2013. The ecology and biogeochemistry of stream biofilms. <i>Nature Reviews Microbiology</i> , 2016, 14, 251-63 Fluvial biofilms from upper and lower river reaches respond differently to w	Biochemical quality of basal resources in a forested stream: effects of nutrient enrichment. Aquatic Sciences, 2017, 79, 99-112 Biofilm phosphorus uptake capacity as a tool for the assessment of pollutant effects in river eccesystems. Ecotoxicology, 2017, 26, 271-282 Warmer night-time temperature promotes microbial heterotrophic activity and modifies stream sediment community. Global Change Biology, 2017, 23, 3825-3837 Interaction between Physical Heterogeneity and Microbial Processes in Subsurface Sediments: A Laboratory-Scale Column Experiment. Environmental Science & Emp; Technology, 2017, 51, 6110-6119 Quality and reactivity of dissolved organic matter in a Mediterranean river across hydrological and spatial gradients. Science of the Total Environment, 2017, 599-600, 1802-1812 A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. Water Resources Research, 2017, 53, 93-109 Seponses of microbial decomposers to drought in streams may depend on the environmental context. Environmental Microbiology Reports, 2017, 9, 756-765 The Biota of Intermittent Rivers and Ephemeral Streams: Prokaryotes, Fungi, and Protozoans 2017, 161-188 The effects of sediment depth and oxygen concentration on the use of organic matter: An experimental study using an infiltration sediment tank. Science of the Total Environment, 2016, 540, 20-310-22 Hydrological conditions control in situ DOM retention and release along a Mediterranean river. Water Research, 2016, 99, 33-45 Influence of grazing on trictosan toxicity to stream periphyton. Freshwater Biology, 2016, 61, 2002-2012 3.1 Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS Microbiology Ecology, 2016, 61, 2002-2012 3.1 The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 2016, 14, 251-63 22.2 Fluvial biofilms from upper and lower river reaches respond differently to wastewater treat

78	Factors controlling seasonality in leaf-litter breakdown in a Mediterranean stream. <i>Freshwater Science</i> , 2015 , 34, 1245-1258	2	18
77	Consequences of warming and resource quality on the stoichiometry and nutrient cycling of a stream shredder. <i>PLoS ONE</i> , 2015 , 10, e0118520	3.7	21
76	Impact of drying/rewetting cycles on the bioavailability of dissolved organic matter molecular-weight fractions in a Mediterranean stream. <i>Freshwater Science</i> , 2015 , 34, 263-275	2	15
75	Nutrient and enzymatic adaptations of stream biofilms to changes in nitrogen and phosphorus supply. <i>Aquatic Microbial Ecology</i> , 2015 , 75, 91-102	1.1	10
74	Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors. <i>Science of the Total Environment</i> , 2014 , 468-469, 715-23	10.2	71
73	A compositional analysis approach to phytoplankton composition in Loastal Mediterranean wetlands: Influence of salinity and nutrient availability. <i>Estuarine, Coastal and Shelf Science</i> , 2014 , 136, 72-81	2.9	15
72	Effects of warming on stream biofilm organic matter use capabilities. <i>Microbial Ecology</i> , 2014 , 68, 132-4	54.4	34
71	Connecting bacterial colonization to physical and biochemical changes in a sand box infiltration experiment. <i>Journal of Hydrology</i> , 2014 , 517, 317-327	6	30
70	Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming. <i>Environmental Microbiology</i> , 2014 , 16, 2550-67	5.2	29
69	Shifts in carbon substrate utilization in sediment microbial communities along the Llobregat River. <i>Fundamental and Applied Limnology</i> , 2014 , 185, 247-261	1.9	7
68	Response of biofilm bacterial communities to antibiotic pollutants in a Mediterranean river. <i>Chemosphere</i> , 2013 , 92, 1126-35	8.4	67
67	Microbial biofilm structure and organic matter use in mediterranean streams. <i>Hydrobiologia</i> , 2013 , 719, 43-58	2.4	64
66	Drought episode modulates the response of river biofilms to triclosan. <i>Aquatic Toxicology</i> , 2013 , 127, 36-45	5.1	28
65	Changes of the phenol-degrading bacterial community during the decomposition of submersed Platanus acerifolia leaves. <i>FEMS Microbiology Letters</i> , 2013 , 338, 184-91	2.9	4
64	Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river. <i>Environmental Pollution</i> , 2013 , 178, 220-8	9.3	84
63	Delayed response of microbial epipelic biofilm to nutrient addition in a Pampean stream. <i>Aquatic Microbial Ecology</i> , 2013 , 69, 145-155	1.1	13
62	Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes. <i>Environmental Research Letters</i> , 2013 , 8, 014002	6.2	19
61	Different diversity-functioning relationship in lake and stream bacterial communities. <i>FEMS Microbiology Ecology</i> , 2013 , 85, 95-103	4.3	26

(2010-2012)

60	Phosphorus use by planktonic communities in a large regulated Mediterranean river. <i>Science of the Total Environment</i> , 2012 , 426, 180-7	10.2	19
59	Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. <i>Hydrobiologia</i> , 2012 , 695, 281-291	2.4	21
58	Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature. <i>Microbial Ecology</i> , 2012 , 64, 593-604	4.4	42
57	The Use of Attached Microbial Communities to Assess Ecological Risks of Pollutants in River Ecosystems: The Role of Heterotrophs. <i>Handbook of Environmental Chemistry</i> , 2012 , 55-83	0.8	9
56	The use of wooden sticks to assess stream ecosystem functioning: comparison with leaf breakdown rates. <i>Science of the Total Environment</i> , 2012 , 440, 115-22	10.2	37
55	Patterns of biofilm formation in two streams from different bioclimatic regions: analysis of microbial community structure and metabolism. <i>Hydrobiologia</i> , 2012 , 695, 83-96	2.4	21
54	Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 934-45	5.1	8
53	Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. <i>Biofouling</i> , 2011 , 27, 59-71	3.3	83
52	Long-term moderate nutrient inputs enhance autotrophy in a forested Mediterranean stream. <i>Freshwater Biology</i> , 2011 , 56, 1266-1280	3.1	38
51	Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron. <i>Science of the Total Environment</i> , 2011 , 409, 3129-37	10.2	67
50	Organic matter characteristics in a Mediterranean stream through amino acid composition: changes driven by intermittency. <i>Aquatic Sciences</i> , 2011 , 73, 523-535	2.5	29
49	Fungal and Bacterial Colonization of Submerged Leaf Litter in a Mediterranean Stream. <i>International Review of Hydrobiology</i> , 2011 , 96, 221-234	2.3	22
48	Multifunctionality and diversity in bacterial biofilms. <i>PLoS ONE</i> , 2011 , 6, e23225	3.7	80
47	Aquatic and Riparian Biodiversity in the Ebro Watershed: Prospects and Threats. <i>Handbook of Environmental Chemistry</i> , 2010 , 121-138	0.8	2
46	Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity. <i>Aquatic Toxicology</i> , 2010 , 96, 225-33	5.1	61
45	Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. <i>Aquatic Toxicology</i> , 2010 , 100, 346-53	5.1	134
44	Does grazing pressure modify diuron toxicity in a biofilm community?. <i>Archives of Environmental Contamination and Toxicology</i> , 2010 , 58, 955-62	3.2	32
43	Organic matter availability during pre- and post-drought periods in a Mediterranean stream. <i>Hydrobiologia</i> , 2010 , 657, 217-232	2.4	66

42	Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. <i>Journal of Hydrology</i> , 2010 , 383, 52-61	6	130
41	Organic matter availability during pre- and post-drought periods in a Mediterranean stream 2010 , 217-	232	1
40	The Iberian Rivers 2009 , 113-149		39
39	Organic matter availability structures microbial biomass and activity in a Mediterranean stream. <i>Freshwater Biology</i> , 2009 , 54, 2025-2036	3.1	47
38	Availability of glucose and light modulates the structure and function of a microbial biofilm. <i>FEMS Microbiology Ecology</i> , 2009 , 69, 27-42	4.3	59
37	Is chemical contamination linked to the diversity of biological communities in rivers?. <i>TrAC - Trends in Analytical Chemistry</i> , 2009 , 28, 592-602	14.6	34
36	The relevance of the community approach linking chemical and biological analyses in pollution assessment. <i>TrAC - Trends in Analytical Chemistry</i> , 2009 , 28, 619-626	14.6	39
35	Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat River basin (northeast Spain). <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2706-14	3.8	155
34	Contribution of microbial and invertebrate communities to leaf litter colonization in a Mediterranean stream. <i>Journal of the North American Benthological Society</i> , 2009 , 28, 34-43		22
33	Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. <i>Chemosphere</i> , 2009 , 76, 1392-401	8.4	110
32	Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. <i>Fundamental and Applied Limnology</i> , 2009 , 173, 255-264	1.9	27
31	ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1). <i>Journal of Phycology</i> , 2008 , 44, 564-72	3	44
30	Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). <i>Science of the Total Environment</i> , 2008 , 404, 196-206	10.2	83
29	Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. <i>Aquatic Botany</i> , 2008 , 88, 32-38	1.8	42
28	Relevance of polymeric matrix enzymes during biofilm formation. <i>Microbial Ecology</i> , 2008 , 56, 427-36	4.4	94
27	Monitoring the effect of chemicals on biological communities. The biofilm as an interface. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 387, 1425-34	4.4	268
26	Effects of the DryWet Hydrological Shift on Dissolved Organic Carbon Dynamics and Fate Across StreamRiparian Interface in a Mediterranean Catchment. <i>Ecosystems</i> , 2007 , 10, 239-251	3.9	38
25	Differential effects of nutrients and light on the primary production of stream algae and mosses. Fundamental and Applied Limnology, 2007 , 170, 1-10	1.9	30

(1999-2006)

24	Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: biogeochemical link across the stream-riparian interface. <i>Microbial Ecology</i> , 2006 , 52, 501-12	4.4	68
23	Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. <i>Ecology</i> , 2006 , 87, 2559-69	4.6	285
22	Effects of nutrient inputs in a forested Mediterranean stream under moderate light availability. <i>Archiv Fil Hydrobiologie</i> , 2005 , 163, 479-496		33
21	Assessing the ecological integrity after nutrient inputs in streams: The relevance of the observation scale. <i>Aquatic Ecosystem Health and Management</i> , 2005 , 8, 397-403	1.4	2
20	The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. <i>Limnology and Oceanography</i> , 2004 , 49, 1713-1721	4.8	66
19	Biofilm structure and function and possible implications for riverine DOC dynamics. <i>Microbial Ecology</i> , 2004 , 47, 316-28	4.4	118
18	Organic matter decomposition by fungi in a Mediterranean forested stream: contribution of streambed substrata. <i>Annales De Limnologie</i> , 2004 , 40, 269-277	0.7	14
17	STRUCTURE AND FUNCTION OF BENTHIC ALGAL COMMUNITIES IN AN EXTREMELY ACID RIVER1. Journal of Phycology, 2003 , 39, 481-489	3	77
16	Ecological implications of mass growth of benthic cyanobacteria in rivers. <i>Aquatic Microbial Ecology</i> , 2003 , 32, 175-184	1.1	53
15	The effect of biological factors on the efficiency of river biofilms in improving water quality. <i>Hydrobiologia</i> , 2002 , 469, 149-156	2.4	105
14	Extracellular enzymatic activities in epilithic biofilms of the Breitenbach: microhabitat differences. <i>Fundamental and Applied Limnology</i> , 2002 , 155, 541-555	1.9	10
13	STRUCTURE AND ACTIVITY OF ROCK AND SAND BIOFILMS IN A MEDITERRANEAN STREAM. <i>Ecology</i> , 2001 , 82, 3232-3245	4.6	68
12	Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. <i>Biodiversity and Conservation</i> , 2000 , 9, 379-392	3.4	16
11	Variability of heterotrophic activity in Mediterranean stream biofilms: A multivariate analysis of physical-chemical and biological factors. <i>Aquatic Sciences</i> , 2000 , 62, 205-215	2.5	12
10	Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. <i>Journal of the North American Benthological Society</i> , 2000 , 19, 609-620		111
9	Influence of algal biomass on extracellular enzyme activity in river biofilms. <i>Microbial Ecology</i> , 2000 , 40, 16-24	4.4	75
8	Effect of primary producers on the heterotrophic metabolism of a stream biofilm. <i>Freshwater Biology</i> , 1999 , 41, 729-736	3.1	71
7	Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. <i>Aquatic Sciences</i> , 1999 , 61, 122	2.5	32

6	A stromatolitic cyanobacterial crust in a Mediterranean stream optimizes organic matter use. <i>Aquatic Microbial Ecology</i> , 1998 , 16, 131-141	1.1	7
5	Heterotrophic metabolism in a forest stream sediment: surface versus subsurface zones. <i>Aquatic Microbial Ecology</i> , 1998 , 16, 143-151	1.1	34
4	Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream fig: 3. Fundamental and Applied Limnology, 1997 , 140, 261-271	1.9	33
3	Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream. <i>Hydrobiologia</i> , 1996 , 335, 107-113	2.4	34
2	Introduction to Microbial Fouling121-122		
1	Freshwater Biofilms137-153		5