
## Eric Chason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8797414/publications.pdf Version: 2024-02-01



FDIC CHASON

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .   | 2.1  | 482       |
| 2  | Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering.<br>Journal of Applied Physics, 2007, 101, 121301.                                   | 2.5  | 434       |
| 3  | Spontaneous Pattern Formation on Ion Bombarded Si(001). Physical Review Letters, 1999, 82, 2330-2333.                                                                               | 7.8  | 288       |
| 4  | Physical Origins of Intrinsic Stresses in Volmer–Weber Thin Films. MRS Bulletin, 2002, 27, 19-25.                                                                                   | 3.5  | 274       |
| 5  | Model for stress generated upon contact of neighboring islands on the surface of a substrate.<br>Journal of Applied Physics, 2001, 89, 4866-4873.                                   | 2.5  | 187       |
| 6  | Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models. Journal of Applied Physics, 2016, 119, .                  | 2.5  | 148       |
| 7  | A kinetic analysis of residual stress evolution in polycrystalline thin films. Thin Solid Films, 2012, 526, 1-14.                                                                   | 1.8  | 140       |
| 8  | Stress and microstructure evolution in thick sputtered films. Acta Materialia, 2009, 57, 2055-2065.                                                                                 | 7.9  | 116       |
| 9  | Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms. Progress in Surface Science, 2013, 88, 103-131.                                                          | 8.3  | 105       |
| 10 | Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics. Science, 2017, 355, 1203-1206.                                                           | 12.6 | 104       |
| 11 | Nonlinear amplitude evolution during spontaneous patterning of ion-bombarded Si(001). Journal of<br>Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 115-120. | 2.1  | 96        |
| 12 | Compressive Stress Generation in Sn Thin Films and the Role of Grain Boundary Diffusion. Physical Review Letters, 2009, 103, 056102.                                                | 7.8  | 85        |
| 13 | Kinetic Model of Stress Evolution during Coalescence and Growth of Polycrystalline Thin Films.<br>Physical Review Letters, 2007, 98, 216104.                                        | 7.8  | 74        |
| 14 | Competition between tensile and compressive stress mechanisms during Volmer-Weber growth of aluminum nitride films. Journal of Applied Physics, 2005, 98, 043509.                   | 2.5  | 70        |
| 15 | Nonclassical Smoothening of Nanoscale Surface Corrugations. Physical Review Letters, 2000, 84, 5800-5803.                                                                           | 7.8  | 60        |
| 16 | Kinetics of ion-induced ripple formation on Cu(001) surfaces. Physical Review B, 2004, 69, .                                                                                        | 3.2  | 55        |
| 17 | Real-time SEM/FIB studies of whisker growth and surface modification. Jom, 2010, 62, 30-37.                                                                                         | 1.9  | 50        |
| 18 | Intrinsic tensile stress and grain boundary formation during Volmer–Weber film growth. Applied<br>Physics Letters, 2002, 81, 1204-1206.                                             | 3.3  | 47        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Finite Element Modeling of Stress Evolution in Sn Films due to Growth of the Cu6Sn5 Intermetallic<br>Compound. Journal of Electronic Materials, 2009, 38, 2676.                                      | 2.2 | 47        |
| 20 | Stress behavior of electroplated Sn films during thermal cycling. Journal of Materials Research, 2009, 24, 1522-1528.                                                                                | 2.6 | 44        |
| 21 | Understanding the Correlation Between Intermetallic Growth, Stress Evolution, and Sn Whisker<br>Nucleation. IEEE Transactions on Electronics Packaging Manufacturing, 2010, 33, 183-192.             | 1.4 | 42        |
| 22 | Altering the Mechanical Properties of Sn Films by Alloying with Bi: Mimicking the Effect of Pb to Suppress Whiskers. Journal of Electronic Materials, 2013, 42, 312-318.                             | 2.2 | 41        |
| 23 | Intrinsic compressive stress in polycrystalline films with negligible grain boundary diffusion. Journal of Applied Physics, 2003, 94, 948-957.                                                       | 2.5 | 36        |
| 24 | Understanding Residual Stress in Electrodeposited Cu Thin Films. Journal of the Electrochemical Society, 2013, 160, D3285-D3289.                                                                     | 2.9 | 35        |
| 25 | Kinetic model for thin film stress including the effect of grain growth. Journal of Applied Physics, 2018, 123, .                                                                                    | 2.5 | 32        |
| 26 | Stress evolution and defect diffusion in Cu during low energy ion irradiation: Experiments and<br>modeling. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 44-51. | 2.1 | 30        |
| 27 | Spontaneous formation of patterns on sputtered surfaces. Scripta Materialia, 2003, 49, 953-959.                                                                                                      | 5.2 | 29        |
| 28 | Stress Relaxation in Sn-Based Films: Effects of Pb Alloying, Grain Size, and Microstructure. Journal of<br>Electronic Materials, 2012, 41, 588-595.                                                  | 2.2 | 28        |
| 29 | Sputter ripples and radiation-enhanced surface kinetics on Cu(001). Physical Review B, 2005, 72, .                                                                                                   | 3.2 | 27        |
| 30 | Effect of layer properties on stress evolution, intermetallic volume, and density during tin whisker formation. Jom, 2011, 63, 62-68.                                                                | 1.9 | 26        |
| 31 | Correlating whisker growth and grain structure on Sn-Cu samples by real-time scanning electron microscopy and backscattering diffraction characterization. Applied Physics Letters, 2012, 100, .     | 3.3 | 26        |
| 32 | Stress evolution and whisker growth during thermal cycling of Sn films: A comparison of analytical modeling and experiments. Acta Materialia, 2017, 129, 462-473.                                    | 7.9 | 25        |
| 33 | Relation of Sn whisker formation to intermetallic growth: Results from a novel Sn–Cu "bimetal ledge<br>specimen― Journal of Materials Research, 2009, 24, 3583-3589.                                 | 2.6 | 22        |
| 34 | In Situ Measurement of Stress and Whisker/Hillock Density During Thermal Cycling of Sn Layers.<br>Journal of Electronic Materials, 2014, 43, 80-87.                                                  | 2.2 | 21        |
| 35 | Measurements of the Phase and Stress Evolution during Initial Lithiation of Sn Electrodes. Journal of the Electrochemical Society, 2017, 164, A574-A579.                                             | 2.9 | 21        |
| 36 | Understanding the relation between stress and surface morphology in sputtered films: Atomistic simulations and experiments. Applied Physics Letters, 2009, 95, .                                     | 3.3 | 20        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Correlation Between Surface Morphology Evolution and Grain Structure: Whisker/Hillock Formation in Sn-Cu. Jom, 2012, 64, 1176-1183.                                                                                              | 1.9 | 20        |
| 38 | Stress evolution in Si during low-energy ion bombardment. Journal of Materials Research, 2014, 29, 2942-2948.                                                                                                                    | 2.6 | 19        |
| 39 | The influence of deposition parameters on the stress evolution of sputter deposited copper. Surface and Coatings Technology, 2019, 357, 939-946.                                                                                 | 4.8 | 19        |
| 40 | Surface morphology evolution during sputter deposition of thin films – lattice Monte Carlo<br>simulations. Journal of Crystal Growth, 2010, 312, 1183-1187.                                                                      | 1.5 | 18        |
| 41 | Whisker growth under a controlled driving force: Pressure induced whisker nucleation and growth.<br>Scripta Materialia, 2020, 182, 43-47.                                                                                        | 5.2 | 18        |
| 42 | A unified kinetic model for stress relaxation and recovery during and after growth interruptions in polycrystalline thin films. Acta Materialia, 2020, 193, 202-209.                                                             | 7.9 | 17        |
| 43 | Surface stress induced in Cu foils during and after low energy ion bombardment. Nuclear<br>Instruments & Methods in Physics Research B, 2007, 257, 428-432.                                                                      | 1.4 | 16        |
| 44 | In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.<br>ACS Applied Materials & Interfaces, 2016, 8, 24168-24176.                                                                     | 8.0 | 16        |
| 45 | Measuring the Stress Dependence of Nucleation and Growth Processes in Sn Whisker Formation. Jom, 2015, 67, 2416-2424.                                                                                                            | 1.9 | 15        |
| 46 | Thick beryllium coatings by ion-assisted magnetron sputtering. Journal of Materials Research, 2012, 27, 822-828.                                                                                                                 | 2.6 | 14        |
| 47 | Equilibrium shape of graphene domains on Ni(111). Physical Review B, 2013, 88, .                                                                                                                                                 | 3.2 | 14        |
| 48 | The microstructural and stress evolution in sputter deposited Ni thin films. Surface and Coatings Technology, 2021, 412, 126973.                                                                                                 | 4.8 | 14        |
| 49 | Quantifying the Rates of Sn Whisker Growth and Plastic Strain Relaxation Using Thermally-Induced<br>Stress. Journal of Electronic Materials, 2016, 45, 21-29.                                                                    | 2.2 | 13        |
| 50 | Nanoscale mechanisms of surface stress and morphology evolution in FCC metals under noble-gas ion<br>bombardments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,<br>2012, 468, 2550-2573. | 2.1 | 12        |
| 51 | Relating residual stress to thin film growth processes via a kinetic model and real-time experiments.<br>Thin Solid Films, 2015, 596, 2-7.                                                                                       | 1.8 | 12        |
| 52 | Kinetic mechanisms in ion-induced ripple formation on Cu(001) surfaces. Nuclear Instruments &<br>Methods in Physics Research B, 2006, 242, 232-236.                                                                              | 1.4 | 10        |
| 53 | FORMATION OF CRACK-LIKE DIFFUSION WEDGES AND COMPRESSIVE STRESS EVOLUTION DURING THIN FILM GROWTH WITH INHOMOGENEOUS GRAIN BOUNDARY DIFFUSIVITY. International Journal of Applied Mechanics, 2009, 01, 1-19.                     | 2.2 | 10        |
| 54 | Kinetic Monte Carlo simulations of stress and morphology evolution in polycrystalline thin films.<br>Journal of Applied Physics, 2019, 125, .                                                                                    | 2.5 | 10        |

| #  | Article                                                                                                                                                                                         | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Measurements and modeling of residual stress in sputtered TiN and ZrN: Dependence on growth rate and pressure. Surface and Coatings Technology, 2020, 404, 126462.                              | 4.8 | 10        |
| 56 | Molecular dynamics simulation of stress induced by energetic particle bombardment in Mo thin films.<br>Materialia, 2021, 16, 101043.                                                            | 2.7 | 9         |
| 57 | Understanding residual stress in thin films: Analyzing wafer curvature measurements for Ag, Cu, Ni,<br>Fe, Ti, and Cr with a kinetic model. Journal of Applied Physics, 2021, 130, .            | 2.5 | 9         |
| 58 | Surface nanopatterning mechanisms by keV ions: Linear instability models and beyond. Nuclear<br>Instruments & Methods in Physics Research B, 2012, 272, 178-182.                                | 1.4 | 8         |
| 59 | Epitaxial electrodeposition of freestanding large area single crystal substrates. Applied Physics<br>Letters, 2007, 90, 261909.                                                                 | 3.3 | 7         |
| 60 | Studying the Effect of Grain Size on Whisker Nucleation and Growth Kinetics Using Thermal Strain.<br>Journal of Electronic Materials, 2019, 48, 17-24.                                          | 2.2 | 7         |
| 61 | Erlebacheret al.Reply:. Physical Review Letters, 2002, 88, .                                                                                                                                    | 7.8 | 5         |
| 62 | Morphology of ion sputtered Cu(001) surface: Transition from unidirectional roughening to<br>bidirectional roughening. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 228-231. | 1.4 | 5         |
| 63 | Stress control in polycrystalline thin films—reduction in adatoms diffusion into grain boundaries<br>via surfactants. Applied Physics Letters, 2010, 96, 211903.                                | 3.3 | 5         |
| 64 | Analytical model of transient compressive stress evolution during growth of high diffusivity thin films on substrates. Philosophical Magazine, 2010, 90, 3037-3048.                             | 1.6 | 5         |
| 65 | Quantifying the Effect of Stress on Sn Whisker Nucleation Kinetics. Journal of Electronic Materials, 2018, 47, 103-109.                                                                         | 2.2 | 5         |
| 66 | Analysis of Pressure-Induced Whisker Nucleation and Growth in Thin Sn Films. Journal of Electronic<br>Materials, 2021, 50, 6639.                                                                | 2.2 | 5         |
| 67 | Kinetic phase diagram for morphological evolution on Cu(001) surfaces during ion bombardment.<br>Nuclear Instruments & Methods in Physics Research B, 2007, 256, 305-312.                       | 1.4 | 3         |
| 68 | Effect of grain size on thin film stress and morphology using kinetic Monte Carlo simulations.<br>Journal of Applied Physics, 2020, 128, 145301.                                                | 2.5 | 3         |
| 69 | Thick Beryllium Coatings by Magnetron Sputtering. Materials Research Society Symposia Proceedings, 2011, 1339, 1.                                                                               | 0.1 | 2         |
| 70 | Stress Measurement in Thin Films Using Wafer Curvature: Principles and Applications. , 2018, , 1-33.                                                                                            |     | 2         |
| 71 | Stress Measurement in Thin Films Using Wafer Curvature: Principles and Applications. , 2019, , 2051-2082.                                                                                       |     | 2         |
| 72 | Whisker Formation in Sn Coatings on Cu. Materials Research Society Symposia Proceedings, 2004, 851, 316.                                                                                        | 0.1 | 1         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Determination of Stresses in Incrementally Deposited Films From Wafer-Curvature Measurements.<br>Journal of Applied Mechanics, Transactions ASME, 2020, 87, .                                     | 2.2 | 1         |
| 74 | Stress and Microstructure Evolution during the Deposition and Crystallization of DCMagnetron<br>Sputter Deposited Amorphous ITO. Materials Research Society Symposia Proceedings, 2001, 666, 251. | 0.1 | 0         |
| 75 | A Structural Study of the Amorphous to Crystalline Transformation in In2O3 Thin Films. Materials<br>Research Society Symposia Proceedings, 2002, 747, 1.                                          | 0.1 | Ο         |
| 76 | Observation of ion-induced ripples in Cu(001). Materials Research Society Symposia Proceedings, 2003,<br>777, 961.                                                                                | 0.1 | 0         |
| 77 | Temperature and Flux dependence of ion induced ripple: a way to study defect and relaxation kinetics during ion bombardment. Materials Research Society Symposia Proceedings, 2004, 849, 142.     | 0.1 | Ο         |
| 78 | Investigation of Tin (Sn) Film Using an Aerosol Jet Additive Manufacturing Deposition Process. Journal of Electronic Materials, 2017, 46, 5174-5182.                                              | 2.2 | 0         |