Pieter de Wilde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8797251/publications.pdf

Version: 2024-02-01

70 papers 3,294 citations

185998 28 h-index 56 g-index

79 all docs

79 docs citations

79 times ranked 2822 citing authors

#	Article	IF	CITATIONS
1	The gap between predicted and measured energy performance of buildings: A framework for investigation. Automation in Construction, 2014, 41, 40-49.	4.8	695
2	A review of uncertainty analysis in building energy assessment. Renewable and Sustainable Energy Reviews, 2018, 93, 285-301.	8.2	265
3	Driving factors for occupant-controlled space heating in residential buildings. Energy and Buildings, 2014, 70, 36-44.	3.1	150
4	Uncertainty and sensitivity analysis of building performance using probabilistic climate projections: A UK case study. Automation in Construction, 2011, 20, 1096-1109.	4.8	119
5	Energy demands of buildings in the framework of climate change: An investigation across Europe. Sustainable Cities and Society, 2020, 60, 102213.	5.1	94
6	The interaction between humans and buildings for energy efficiency: A critical review. Energy Research and Social Science, 2021, 71, 101828.	3.0	92
7	Thermography methodologies for detecting energy related building defects. Renewable and Sustainable Energy Reviews, 2014, 40, 296-310.	8.2	89
8	Predicting the performance of an office under climate change: A study of metrics, sensitivity and zonal resolution. Energy and Buildings, 2010, 42, 1674-1684.	3.1	88
9	Identification of key factors for uncertainty in the prediction of the thermal performance of an office building under climate change. Building Simulation, 2009, 2, 157-174.	3.0	76
10	Predictability of occupant presence and performance gap in building energy simulation. Applied Energy, 2017, 208, 1639-1652.	5.1	76
11	Building defect detection: External versus internal thermography. Building and Environment, 2016, 105, 317-331.	3.0	74
12	Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis. Applied Energy, 2014, 135, 320-328.	5.1	67
13	Providing computational support for the selection of energy saving building components. Energy and Buildings, 2004, 36, 749-758.	3.1	66
14	Time-lapse thermography for building defect detection. Energy and Buildings, 2015, 92, 95-106.	3.1	63
15	Zero carbon homes: Perceptions from the UK construction industry. Energy Policy, 2015, 79, 23-36.	4.2	60
16	The relationship between quality defects and the thermal performance of buildings. Renewable and Sustainable Energy Reviews, 2018, 81, 883-894.	8.2	58
17	Longitudinal prediction of the operational energy use of buildings. Building and Environment, 2011, 46, 1670-1680.	3.0	55
18	Future moisture loads for building facades in Sweden: Climate change and wind-driven rain. Building and Environment, 2015, 93, 362-375.	3.0	54

#	Article	IF	CITATIONS
19	Ten questions concerning building performance analysis. Building and Environment, 2019, 153, 110-117.	3.0	45
20	Management of thermal performance risks in buildings subject to climate change. Building and Environment, 2012, 55, 167-177.	3.0	39
21	Uncertainty and sensitivity analysis of energy assessment for office buildings based on Dempster-Shafer theory. Energy Conversion and Management, 2018, 174, 705-718.	4.4	39
22	Measured Indoor Temperatures, Thermal Comfort and Overheating Risk: Post-occupancy Evaluation of Low Energy Houses in the UK. Energy Procedia, 2016, 88, 714-720.	1.8	38
23	Design analysis integration: supporting the selection of energy saving building components. Building and Environment, 2002, 37, 807-816.	3.0	36
24	The perceived barriers to the inclusion of rainwater harvesting systems by UK house building companies. Urban Water Journal, 2010, 7, 257-265.	1.0	35
25	Uncertainties in predicting the impact of climate change on thermal performance of domestic buildings in the UK. Building Services Engineering Research and Technology, 2008, 29, 7-26.	0.9	31
26	An interoperability workbench for design analysis integration. Energy and Buildings, 2004, 36, 737-748.	3.1	30
27	Assessing the energy saving potential of an existing high-rise office building stock. Energy and Buildings, 2018, 173, 547-561.	3.1	29
28	Estimating building cooling energy demand through the Cooling Degree Hours in a changing climate: A modeling study. Sustainable Cities and Society, 2022, 76, 103518.	5.1	28
29	Energy performance and occupancy satisfaction. Facilities, 2008, 26, 542-551.	0.8	27
30	The role of adaptive thermal comfort in the prediction of the thermal performance of a modern mixed-mode office building in the UK under climate change. Journal of Building Performance Simulation, 2010, 3, 87-101.	1.0	27
31	Building simulation approaches for the training of automated data analysis tools in building energy management. Advanced Engineering Informatics, 2013, 27, 457-465.	4.0	27
32	Towards probabilistic performance metrics for climate change impact studies. Energy and Buildings, 2011, 43, 3013-3018.	3.1	26
33	Energy Waste in Buildings Due to Occupant Behaviour. Energy Procedia, 2017, 105, 2233-2238.	1.8	26
34	A methodology for estimating office building energy use baselines by means of land use legislation and reference buildings. Energy and Buildings, 2017, 143, 100-113.	3.1	25
35	The Impact of Courtyard parameters on its shading level An experimental study in Baghdad, Iraq. Energy Procedia, 2017, 134, 99-109.	1.8	23
36	Development of a cost effective probe for the long term monitoring of straw bale buildings. Building and Environment, 2011, 46, 156-164.	3.0	22

#	Article	IF	CITATIONS
37	Hygrothermal performance of bio-based insulation materials. Proceedings of Institution of Civil Engineers: Construction Materials, 2013, 166, 257-263.	0.7	22
38	Thermal building simulation using the UKCP09 probabilistic climate projections. Journal of Building Performance Simulation, 2011, 4, 105-124.	1.0	21
39	The noise insulation properties of non-food-crop walling for schools and colleges: A case study. Journal of Building Appraisal, 2009, 5, 29-40.	0.4	18
40	Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation. Advanced Engineering Informatics, 2018, 36, 86-100.	4.0	18
41	Group self-build housing: A bottom-up approach to environmentally and socially sustainable housing. Journal of Cleaner Production, 2020, 243, 118657.	4.6	17
42	Resilience of a Building to Future Climate Conditions in Three European Cities. Energies, 2019, 12, 4506.	1.6	15
43	Building envelope anomaly characterization and simulation using drone time-lapse thermography. Energy and Buildings, 2022, 259, 111754.	3.1	15
44	Simulation of courtyard spaces in a desert climate. Energy Procedia, 2017, 142, 1997-2002.	1.8	13
45	†The building performance gap: Are modellers literate?'. Building Services Engineering Research and Technology, 2017, 38, 757-759.	0.9	12
46	The impact of courtyard compact urban fabric on its shading: case study of Mosul city, Iraq. Energy Procedia, 2017, 122, 889-894.	1.8	11
47	Impact of global warming on thermal performance of domestic buildings using probabilistic climate data. International Journal of Global Warming, 2016, 10, 514.	0.2	10
48	The impact of defects on energy performance of buildings: Quality management in social housing developments. Energy Procedia, 2019, 158, 4357-4362.	1.8	9
49	Improper Window Use in Office Buildings: Findings from a Longitudinal Study in Beijing, China. Energy Procedia, 2016, 88, 761-767.	1.8	8
50	The impact of courtyard geometry on its mean radiant temperature. Journal of Physics: Conference Series, 2019, 1343, 012022.	0.3	8
51	Validation of data analysis routines for a thermal probe apparatus using numerical data sets. Building Simulation, 2008, 1, 36-45.	3.0	7
52	Thermal Probe Technology for Buildings: Transition from Laboratory to Field Measurements. Journal of Architectural Engineering, 2008, 14, 111-118.	0.8	7
53	Managing the selection of energy saving features in building design. Engineering, Construction and Architectural Management, 2002, 9, 192-208.	1.8	5
54	Evolution and validation of a thermal probe model. Journal of Building Performance Simulation, 2009, 2, 85-94.	1.0	4

#	Article	IF	CITATIONS
55	Thermal Design of Turkish Schools: Prospects for an Improved Pre-design Process. Architectural Engineering and Design Management, 2009, 5, 153-164.	1.2	4
56	The Actual Performance of Aspiring Low Energy Social Houses in the United Kingdom. Energy Procedia, 2017, 105, 2181-2186.	1.8	4
57	Delivering Energy-Efficient Social Housing: Implications of the Procurement Process. Procedia Engineering, 2017, 182, 10-17.	1.2	3
58	A systematic assessment of architectural approaches for solving the housing problem in Iraq. Frontiers of Architectural Research, 2018, 7, 561-572.	1.3	3
59	Central heating settings in low energy social housing in the United Kingdom. Energy Procedia, 2019, 158, 3399-3404.	1.8	3
60	EWMA based approaches for automated building energy analysis. , 2011, , .		2
61	Central heating settings and heating energy demand in low energy social housing in the United Kingdom. Energy Procedia, 2019, 158, 3658-3663.	1.8	2
62	Thermally Comfortable Housing in Iraqâ€"Prospects of the Courtyard Pattern in Achieving Energy Efficiency. Lecture Notes in Civil Engineering, 2018, , 904-917.	0.3	2
63	Assessing annual thermal comfort extent in central courtyards: Baghdad as a case study. Smart and Sustainable Built Environment, 2023, 12, 660-681.	2.2	2
64	Approximate Bayesian Computation in Parameter Estimation of Building Energy Models. Environmental Science and Engineering, 2020, , 391-399.	0.1	1
65	Interactions between buildings, building stakeholders and animals: A scoping review. Journal of Cleaner Production, 2022, 367, 133055.	4.6	1
66	Assessing housing approaches for Iraq: Learning from the world experience. Habitat International, 2019, 89, 102001.	2.3	0
67	Impact of global warming on thermal performance of domestic buildings using probabilistic climate data. International Journal of Global Warming, 2016, 10, 514.	0.2	0
68	Intelligent Computing for Building Performance Analysis. Lecture Notes in Computer Science, 2018, , 457-471.	1.0	0
69	Sensitivity Analysis of Building Energy Performance Assessment Based on Machine-Learning Models. Environmental Science and Engineering, 2020, , 401-409.	0.1	0
70	SENSITIVITY ANALYSIS OF BUILDING ENERGY PERFORMANCE BASED ON POLYNOMIAL CHAOS EXPANSION. Journal of Green Building, 2020, 15, 173-183.	0.4	0