Inseong Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8797112/publications.pdf

Version: 2024-02-01

430754 434063 33 951 18 31 citations h-index g-index papers 33 33 33 1226 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Activation of persulfate by humic substances: Stoichiometry and changes in the optical properties of the humic substances. Water Research, 2022, 212, 118107.	5.3	10
2	Laboratory and field study on changes in water quality and increase in dissolved iron during riverbank filtration. Environmental Science and Pollution Research, 2021, 28, 50142-50152.	2.7	1
3	Colloidal activated carbon as a highly efficient bifunctional catalyst for phenol degradation. Journal of Hazardous Materials, 2021, 414, 125474.	6.5	30
4	Field-scale investigation of nanoscale zero-valent iron (NZVI) injection parameters for enhanced delivery of NZVI particles to groundwater. Water Research, 2021, 202, 117402.	5. 3	29
5	Mechanisms of electro-assisted persulfate/nano-Fe0 oxidation process: Roles of redox mediation by dissolved Fe. Journal of Hazardous Materials, 2020, 388, 121739.	6.5	33
6	Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER). Chemosphere, 2020, 259, 127382.	4.2	52
7	Effects of the formation of reactive chlorine species on oxidation process using persulfate and nano zero-valent iron. Chemosphere, 2020, 250, 126266.	4.2	19
8	Carbonation/granulation of mine tailings using a MgO/ground-granule blast-furnace-slag binder. Journal of Hazardous Materials, 2019, 378, 120760.	6.5	9
9	Stabilization of lead (Pb) and zinc (Zn) in contaminated rice paddy soil using starfish: A preliminary study. Chemosphere, 2018, 199, 459-467.	4.2	13
10	Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI. Environmental Science & Echnology, 2018, 52, 3625-3633.	4.6	276
11	Reciprocal influences of dissolved organic matter and nanosized zero-valent iron in aqueous media. Chemosphere, 2018, 193, 936-942.	4.2	16
12	Effect of CO2 concentration on strength development and carbonation of a MgO-based binder for treating fine sediment. Environmental Science and Pollution Research, 2018, 25, 22552-22560.	2.7	8
13	Assessment and control of emerging micropollutants in water: Asian experiences. Science of the Total Environment, 2018, 644, 994.	3.9	O
14	Quality improvement of acidic soils by biochar derived from renewable materials. Environmental Science and Pollution Research, 2017, 24, 4194-4199.	2.7	21
15	Investigation of the accelerated carbonation of a MgO-based binder used to treat contaminated sediment. Environmental Earth Sciences, 2017, 76, 1.	1.3	8
16	Application of Nanosized Zero-valent Iron-Activated Persulfate for Treating Groundwater Contaminated with Phenol. Journal of Soil and Groundwater Environment, 2017, 22, 41-48.	0.1	2
17	Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron. Journal of Soil and Groundwater Environment, 2017, 22, 17-25.	0.1	1
18	Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: A field study. Water Research, 2016, 107, 57-65.	5. 3	28

#	Article	IF	CITATIONS
19	Prediction of water quality in piping system of bank filtrate. Desalination and Water Treatment, 2015, 54, 1393-1400.	1.0	1
20	Effects of groundwater solutes on colloidal stability of polymer-coated and bare nanosized zero-valent iron particles. Desalination and Water Treatment, 2015, 54, 1281-1289.	1.0	8
21	Development of an MgO-based binder for stabilizing fine sediments and storing CO2. Environmental Geochemistry and Health, 2015, 37, 1063-1072.	1.8	8
22	Evaluation of phosphate fertilizers and red mud in reducing plant availability of Cd, Pb, and Zn in mine tailings. Environmental Earth Sciences, 2015, 74, 2659-2668.	1.3	30
23	Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Chemosphere, 2014, 113, 93-100.	4.2	63
24	MgOâ€Based Binder for Treating Contaminated Sediments: Characteristics of Metal Stabilization and Mineral Carbonation. Clean - Soil, Air, Water, 2014, 42, 355-363.	0.7	19
25	Field Study on Application of Reactive Zone Technology Using Zero-Valent Iron Nanoparticles for Remediation of TCE-Contaminated Groundwater. Journal of Soil and Groundwater Environment, 2014, 19, 80-90.	0.1	0
26	Human Health Risk Assessment of Soils Contaminated with Metal(loid)s by Using DGT Uptake: A Case Study of a Former Korean Metal Refinery Site. Human and Ecological Risk Assessment (HERA), 2013, 19, 767-777.	1.7	19
27	Toxicity and Bioaccumulation of Petroleum Mixtures with Alkyl PAHs in Earthworms. Human and Ecological Risk Assessment (HERA), 2013, 19, 819-835.	1.7	21
28	Characterization of the Transport of Zero-Valent Iron Nanoparticles in an Aquifer for Application of Reactive Zone Technology. Journal of Soil and Groundwater Environment, 2013, 18, 109-118.	0.1	2
29	Aging characteristics and reactivity of two types of nanoscale zero-valent iron particles (FeBH and) Tj ETQq $1\ 1\ 0$.784314 r	gBT <u>/</u> Overloc
30	Effect of Resuspension on the Release of Heavy Metals and Water Chemistry in Anoxic and Oxic Sediments. Clean - Soil, Air, Water, 2011, 39, 908-915.	0.7	20
31	Atmospherically Stable Nanoscale Zero-Valent Iron Particles Formed under Controlled Air Contact: Characteristics and Reactivity. Environmental Science & Eamp; Technology, 2010, 44, 1760-1766.	4.6	80
32	Hexavalent Chromium Uptake and Release in Cement Pastes. Environmental Engineering Science, 2006, 23, 133-140.	0.8	20
33	Reactivity of Fe(II)/cement systems in dechlorinating chlorinated ethylenes. Journal of Hazardous Materials, 2005, 118, 103-111.	6.5	19