Juli Feigon

List of Publications by Citations

Source: https://exaly.com/author-pdf/8796994/juli-feigon-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,872 82 98 47 h-index g-index citations papers 5.81 7,426 105 12.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
98	Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. <i>Nature</i> , 1992 , 356, 164-8	50.4	491
97	The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: a thermodynamic analysis by 1H NMR. <i>Biochemistry</i> , 1996 , 35, 15383-90	3.2	292
96	Multistranded DNA structures. <i>Current Opinion in Structural Biology</i> , 1999 , 9, 305-14	8.1	254
95	Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. <i>Molecular Cell</i> , 2005 , 17, 671-82	17.6	250
94	Triple-strand formation in the homopurine:homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4. <i>Nature</i> , 1989 , 339, 637-40	50.4	247
93	The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G(4)T(4)G(4)). <i>Nucleic Acids Research</i> , 1999 , 27, 3018-28	20.1	203
92	Localization of ammonium ions in the minor groove of DNA duplexes in solution and the origin of DNA A-tract bending. <i>Journal of Molecular Biology</i> , 1999 , 286, 651-60	6.5	190
91	Strand orientation in the DNA quadruplex formed from the Oxytricha telomere repeat oligonucleotide d(G4T4G4) in solution. <i>Biochemistry</i> , 1993 , 32, 8682-92	3.2	169
90	NMR studies of triple-strand formation from the homopurine-homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4. <i>Biochemistry</i> , 1989 , 28, 7859-70	3.2	168
89	Structure and function of telomerase RNA. Current Opinion in Structural Biology, 2006, 16, 307-18	8.1	159
88	Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). <i>Structure</i> , 1994 , 2, 221-33	5.2	159
87	Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. <i>Journal of Molecular Biology</i> , 2002 , 319, 1243-55	6.5	150
86	Binding sites and dynamics of ammonium ions in a telomere repeat DNA quadruplex. <i>Journal of Molecular Biology</i> , 1999 , 285, 233-43	6.5	147
85	Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 449-54	11.5	145
84	Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 8307-12	11.5	133
83	DNA A-tract bending in three dimensions: solving the dA4T4 vs. dT4A4 conundrum. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1177-82	11.5	118
82	Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. <i>Nature Structural Biology</i> , 1998 , 5, 1042-7		114

(2008-2001)

81	A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex. <i>Journal of the American Chemical Society</i> , 2001 , 123, 4014-	22 ^{6.4}	113	
80	Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. <i>Biochemistry</i> , 2001 , 40, 6929-36	3.2	111	
79	Monitoring RNA base structure and dynamics using site-directed spin labeling. <i>Biochemistry</i> , 2003 , 42, 6772-83	3.2	107	
78	Solution structure of the loop B domain from the hairpin ribozyme. <i>Nature Structural Biology</i> , 1999 , 6, 212-6		107	
77	Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. <i>Science</i> , 2015 , 350, aab4070	33.3	105	
76	Architecture of human telomerase RNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20325-32	11.5	105	
75	Structural determinants for the binding of ubiquitin-like domains to the proteasome. <i>EMBO Journal</i> , 2003 , 22, 4634-45	13	100	
74	Sugar conformations in intramolecular DNA triplexes determined by couping constants obtained by automated simulation of P.COSY cross peaks. <i>Journal of the American Chemical Society</i> , 1992 , 114, 781-	783 ^{.4}	99	
73	New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. <i>Journal of Biomolecular NMR</i> , 2004 , 28, 59-67	3	97	
72	1H NMR spectroscopy of DNA triplexes and quadruplexes. <i>Methods in Enzymology</i> , 1995 , 261, 225-55	1.7	94	
71	Specificity of the interaction between ubiquitin-associated domains and ubiquitin. <i>Journal of Biological Chemistry</i> , 2004 , 279, 11926-36	5.4	86	
70	Ammonium Ion as an NMR Probe for Monovalent Cation Coordination Sites of DNA Quadruplexes. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6403-6404	16.4	85	
69	The architecture of Tetrahymena telomerase holoenzyme. <i>Nature</i> , 2013 , 496, 187-92	50.4	82	
68	Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. <i>Molecular Cell</i> , 2012 , 47, 16-26	17.6	80	
67	Structural and functional characterization of human telomerase RNA processing and cajal body localization signals. <i>Molecular Cell</i> , 2007 , 27, 869-81	17.6	77	
66	Characterization of the hydrogen bond network in guanosine quartets by internucleotide 3hJ(NC)S and 2hJ(NN) scalar couplings. <i>Journal of Biomolecular NMR</i> , 2000 , 16, 279-89	3	77	
65	Assignment methodology for larger RNA oligonucleotides: application to an ATP-binding RNA aptamer. <i>Journal of Biomolecular NMR</i> , 1997 , 9, 259-72	3	73	
64	Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA. <i>Journal of Molecular Biology</i> , 2008 , 384, 1249-61	6.5	72	

63	Biochemical and structural analysis of the interaction between the UBA(2) domain of the DNA repair protein HHR23A and HIV-1 Vpr. <i>Biochemistry</i> , 2000 , 39, 14103-12	3.2	68
62	Structure of Telomerase with Telomeric DNA. <i>Cell</i> , 2018 , 173, 1179-1190.e13	56.2	68
61	Solution structures of unimolecular quadruplexes formed by oligonucleotides containing Oxytricha telomere repeats. <i>Structure</i> , 1995 , 3, 997-1008	5.2	62
60	Solution structure of the two N-terminal RNA-binding domains of nucleolin and NMR study of the interaction with its RNA target. <i>Journal of Molecular Biology</i> , 2000 , 303, 227-41	6.5	57
59	Recognition of pre-formed and flexible elements of an RNA stem-loop by nucleolin. <i>Journal of Molecular Biology</i> , 2001 , 309, 763-75	6.5	56
58	Through-bond correlation of imino and aromatic resonances in 13C-, 15N-labeled RNA via heteronuclear TOCSY. <i>Journal of Biomolecular NMR</i> , 1996 , 7, 83-7	3	54
57	Solution structure of the complex formed by the two N-terminal RNA-binding domains of nucleolin and a pre-rRNA target. <i>Journal of Molecular Biology</i> , 2004 , 337, 799-816	6.5	51
56	Solution structure of an intramolecular DNA triplex linked by hexakis(ethylene glycol) units: d(AGAGAGAA-(EG)6-TTCTCTCT-(EG)6-TCTCTCTT). <i>Biochemistry</i> , 1998 , 37, 5810-9	3.2	51
55	Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 18761-8	11.5	50
54	Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10970-5	11.5	48
53	Single-molecule FRET reveals the folding dynamics of the human telomerase RNA pseudoknot domain. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5876-9	16.4	47
52	Effect of pseudouridylation on the structure and activity of the catalytically essential P6.1 hairpin in human telomerase RNA. <i>Nucleic Acids Research</i> , 2010 , 38, 6746-56	20.1	47
51	Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5190-3	16.4	46
50	Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs. <i>Structure</i> , 2011 , 19, 999-1010	5.2	45
49	Characterization of the cation and temperature dependence of DNA quadruplex hydrogen bond properties using high-resolution NMR. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14466-72	16.4	44
48	Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg(2+)-dependent docking of a GAAA tetraloop. <i>Journal of Molecular Biology</i> , 2005 , 351, 1-8	6.5	44
47	Extraction of spectral information from a short-time signal using filter-diagonalization: Recent developments and applications to semiclassical reaction dynamics and nuclear magnetic resonance signals. <i>Journal of Chemical Physics</i> , 1998 , 108, 8360-8368	3.9	44
46	Simple, efficient protocol for enzymatic synthesis of uniformly 13C, 15N-labeled DNA for heteronuclear NMR studies. <i>Nucleic Acids Research</i> , 1998 , 26, 2618-24	20.1	43

(2016-1992)

45	Proton NMR study of the [d(ACGTATACGT)]2-2echinomycin complex: conformational changes between echinomycin binding sites. <i>Nucleic Acids Research</i> , 1992 , 20, 2411-20	20.1	38
44	Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function. <i>Rna</i> , 2006 , 12, 1475-85	5.8	37
43	Solution Structure of an Intramolecular Pyrimidine Purine Pyrimidine Triplex Containing an RNA Third Strand. <i>Journal of the American Chemical Society</i> , 1998 , 120, 4281-4289	16.4	37
42	Structure determination of protein/RNA complexes by NMR. <i>Methods in Enzymology</i> , 2005 , 394, 525-45	1.7	34
41	Solution structure of an intramolecular DNA triplex containing 5-(1-propynyl)-2Sdeoxyuridine residues in the third strand. <i>Biochemistry</i> , 1998 , 37, 5820-30	3.2	34
40	xRRM: a new class of RRM found in the telomerase La family protein p65. RNA Biology, 2013 , 10, 353-9	4.8	31
39	Measurement of small scalar and dipolar couplings in purine and pyrimidine bases. <i>Journal of Biomolecular NMR</i> , 2001 , 21, 153-60	3	31
38	Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6457-E6466	5 ^{11.5}	31
37	Progress in Human and Tetrahymena Telomerase Structure Determination. <i>Annual Review of Biophysics</i> , 2017 , 46, 199-225	21.1	30
36	Structure of the XPC binding domain of hHR23A reveals hydrophobic patches for protein interaction. <i>Protein Science</i> , 2004 , 13, 2370-7	6.3	29
35	Solution nuclear magnetic resonance probing of cation binding sites on nucleic acids. <i>Methods in Enzymology</i> , 2001 , 338, 400-20	1.7	29
34	Solution structures of stem-loop RNAs that bind to the two N-terminal RNA-binding domains of nucleolin. <i>Nucleic Acids Research</i> , 2003 , 31, 6461-72	20.1	28
33	Structure and sequence elements of the CR4/5 domain of medaka telomerase RNA important for telomerase function. <i>Nucleic Acids Research</i> , 2014 , 42, 3395-408	20.1	27
32	Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface. <i>Journal of Molecular Biology</i> , 2011 , 411, 927-42	6.5	26
31	Structure of the Tetrahymena thermophila telomerase RNA helix II template boundary element. <i>Nucleic Acids Research</i> , 2006 , 34, 816-25	20.1	25
30	Structure and function of preQ riboswitches. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2014 , 1839, 939-950	6	24
29	Chirality errors in nucleic acid structures. <i>Nature</i> , 1997 , 387, 668	50.4	24
28	hLARP7 C-terminal domain contains an xRRM that binds the 3Shairpin of 7SK RNA. <i>Nucleic Acids Research</i> , 2016 , 44, 9977-9989	20.1	24

27	Inhibiting amyloid-leytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. <i>Nature Chemistry</i> , 2018 , 10, 1213-1221	17.6	24
26	Determination of the glycosidic torsion angles in uniformly 13C-labeled nucleic acids from vicinal coupling constants 3J(C2)/4-H1Sand 3J(C6)/8-H1S <i>Journal of Biomolecular NMR</i> , 2002 , 23, 1-12	3	23
25	Structure and functional studies of the CS domain of the essential H/ACA ribonucleoparticle assembly protein SHQ1. <i>Journal of Biological Chemistry</i> , 2009 , 284, 1906-16	5.4	22
24	Structure and folding of the Tetrahymena telomerase RNA pseudoknot. <i>Nucleic Acids Research</i> , 2017 , 45, 482-495	20.1	21
23	Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end. Journal of Biological Chemistry, 2013 , 288, 36385-97	5.4	21
22	Tetrahymena telomerase holoenzyme assembly, activation, and inhibition by domains of the p50 central hub. <i>Molecular and Cellular Biology</i> , 2013 , 33, 3962-71	4.8	20
21	Structural Biology of Telomerase. Cold Spring Harbor Perspectives in Biology, 2019, 11,	10.2	18
20	Structural biology of telomerase and its interaction at telomeres. <i>Current Opinion in Structural Biology</i> , 2017 , 47, 77-87	8.1	18
19	Solution structure of a parallel-stranded oligoisoguanine DNA pentaplex formed by d(T(iG)4 T) in the presence of Cs+ ions. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7952-5	16.4	18
18	Shared Subunits of Tetrahymena Telomerase Holoenzyme and Replication Protein A Have Different Functions in Different Cellular Complexes. <i>Journal of Biological Chemistry</i> , 2017 , 292, 217-228	5.4	16
17	Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E5125-34	11.5	16
16	Progress in structural studies of telomerase. Current Opinion in Structural Biology, 2014 , 24, 115-24	8.1	15
15	Structural basis of 7SK RNA 5SEphosphate methylation and retention by MePCE. <i>Nature Chemical Biology</i> , 2019 , 15, 132-140	11.7	14
14	Structures of telomerase at several steps of telomere repeat synthesis. <i>Nature</i> , 2021 , 593, 454-459	50.4	13
13	Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites. <i>Journal of Molecular Biology</i> , 2013 , 425, 546-62	6.5	12
12	Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III. <i>Rna</i> , 2005 , 11, 1225-37	5.8	11
11	Integrative structural biology of Tetrahymena telomerase - insights into catalytic mechanism and interaction at telomeres. <i>FEBS Journal</i> , 2016 , 283, 2044-50	5.7	10
10	Structure and interactions of the CS domain of human H/ACA RNP assembly protein Shq1. <i>Journal of Molecular Biology</i> , 2015 , 427, 807-823	6.5	8

LIST OF PUBLICATIONS

9	Contributions of the RNA-binding and linker domains and RNA structure to the specificity and affinity of the nucleolin RBD12/NRE interaction. <i>Biochemistry</i> , 2004 , 43, 6937-47	3.2	8	
8	A new DNA quadruplex. <i>Current Biology</i> , 1993 , 3, 611-3	6.3	8	
7	Structure of telomerase protein Pof8 C-terminal domain is an xRRM conserved among LARP7 proteins. <i>RNA Biology</i> , 2021 , 18, 1181-1192	4.8	8	
6	Single-Molecule FRET Reveals the Folding Dynamics of the Human Telomerase RNA Pseudoknot Domain. <i>Angewandte Chemie</i> , 2012 , 124, 5978-5981	3.6	6	
5	A structurally conserved human and telomerase catalytic core. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31078-31087	11.5	6	
4	Back to the future of RNA structure. <i>Rna</i> , 2015 , 21, 611-2	5.8	3	
3	Solution Structure of a Parallel-Stranded Oligoisoguanine DNA Pentaplex Formed by d(T(iG)4T) in the Presence of Cs+ Ions. <i>Angewandte Chemie</i> , 2012 , 124, 8076-8079	3.6	3	
2	Structure ofS. pombetelomerase protein Pof8 C-terminal domain is an xRRM conserved among LARP7 proteins		1	
1	Structure and function of human telomerase and H/ACA RNA. FASEB Journal, 2008, 22, 259.2	0.9		