
Maurizio Ventre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8796758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determinants of cell–material crosstalk at the interface: towards engineering of cell instructive materials. Journal of the Royal Society Interface, 2012, 9, 2017-2032.	1.5	152
2	Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomaterialia, 2010, 6, 2532-2539.	4.1	141
3	Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning. ACS Applied Materials & amp; Interfaces, 2016, 8, 14896-14908.	4.0	107
4	Topographic cell instructive patterns to control cell adhesion, polarization and migration. Journal of the Royal Society Interface, 2014, 11, 20140687.	1.5	96
5	Functional porous hydrogels to study angiogenesis under the effect of controlled release of vascular endothelial growth factor. Acta Biomaterialia, 2012, 8, 3294-3301.	4.1	95
6	Reversible Holographic Patterns on Azopolymers for Guiding Cell Adhesion and Orientation. ACS Applied Materials & Interfaces, 2015, 7, 16984-16991.	4.0	79
7	On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change. Optics Express, 2012, 20, 28485.	1.7	72
8	Particle tracking by full-field complex wavefront subtraction in digital holography microscopy. Lab on A Chip, 2014, 14, 1129-1134.	3.1	66
9	Magnetophoresis â€~meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab on A Chip, 2015, 15, 1912-1922.	3.1	56
10	Tuning the material-cytoskeleton crosstalk via nanoconfinement of focal adhesions. Biomaterials, 2014, 35, 2743-2751.	5.7	54
11	Nanoengineered Surfaces for Focal Adhesion Guidance Trigger Mesenchymal Stem Cell Self-Organization and Tenogenesis. Nano Letters, 2015, 15, 1517-1525.	4.5	54
12	Spatioâ€Temporal Control of Dynamic Topographic Patterns on Azopolymers for Cell Culture Applications. Advanced Functional Materials, 2016, 26, 7572-7580.	7.8	53
13	Tethered Pyro-Electrohydrodynamic Spinning for Patterning Well-Ordered Structures at Micro- and Nanoscale. Chemistry of Materials, 2014, 26, 3357-3360.	3.2	50
14	Adhesive class I restorations in sound molar teeth incorporating combined resin-composite and glass ionomer materials: CAD-FE modeling and analysis. Dental Materials, 2019, 35, 1514-1522.	1.6	41
15	The effect of composition and microstructure on the viscoelastic properties of dermis. Journal of Biomechanics, 2009, 42, 430-435.	0.9	38
16	Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm. Applied Optics, 2013, 52, 1453.	0.9	38
17	Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Frontiers in Bioengineering and Biotechnology, 2018, 6, 190.	2.0	37
18	Focal adhesion clustering drives endothelial cell morphology on patterned surfaces. Journal of the Roval Society Interface, 2019, 16, 20190263.	1.5	29

MAURIZIO VENTRE

#	Article	IF	CITATIONS
19	The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: A 3D finite element analysis. Dental Materials, 2021, 37, 1688-1697.	1.6	27
20	Optimizing design and fabrication of microfluidic devices for cell cultures: An effective approach to control cell microenvironment in three dimensions. Biomicrofluidics, 2014, 8, 046503.	1.2	25
21	Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure. ACS Applied Materials & Interfaces, 2015, 7, 21503-21510.	4.0	25
22	A numerical model for durotaxis. Journal of Theoretical Biology, 2011, 280, 150-158.	0.8	22
23	Cell Fluidics: Producing Cellular Streams on Micropatterned Synthetic Surfaces. Langmuir, 2012, 28, 714-721.	1.6	22
24	The p63 Protein Isoform ΔNp63α Modulates Y-box Binding Protein 1 in Its Subcellular Distribution and Regulation of Cell Survival and Motility Genes. Journal of Biological Chemistry, 2012, 287, 30170-30180.	1.6	21
25	Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction. Gels, 2016, 2, 12.	2.1	21
26	Aligned fibrous decellularized cell derived matrices for mesenchymal stem cell amplification. Journal of Biomedical Materials Research - Part A, 2019, 107, 2536-2546.	2.1	21
27	Molding Micropatterns of Elasticity on PECâ€Based Hydrogels to Control Cell Adhesion and Migration. Advanced Engineering Materials, 2011, 13, B395.	1.6	18
28	3D Finite Element Analysis of Rotary Instruments in Root Canal Dentine with Different Elastic Moduli. Applied Sciences (Switzerland), 2021, 11, 2547.	1.3	17
29	Effects of surface nanopatterning on internalization and amyloid aggregation of the fragment 264-277 of Nucleophosmin 1. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111439.	2.5	15
30	Quick liquid packaging: Encasing water silhouettes by three-dimensional polymer membranes. Science Advances, 2019, 5, eaat5189.	4.7	14
31	On the influence of surface patterning on tissue self-assembly and mechanics. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1621-1633.	1.3	13
32	Mechanical properties and modelling of a hydrophilic composite used as a biomaterial. Composites Science and Technology, 2006, 66, 92-101.	3.8	12
33	Nanotechnologies for tissue engineering and regeneration. , 2018, , 93-206.		12
34	Regulating Fibroblast Shape and Mechanics through Photoresponsive Surfaces with Concentric Circular Topographic Patterns. Advanced Materials Interfaces, 2018, 5, 1800890.	1.9	12
35	Defining an optimal stromal derived factorâ€1 presentation for effective recruitment of mesenchymal stem cells in 3D. Biotechnology and Bioengineering, 2014, 111, 2303-2316.	1.7	10
36	Mechanical behavior of Class I cavities restored by different material combinations under loading and polymerization shrinkage stress. A 3D-FEA study. American Journal of Dentistry, 2019, 32, 55-60.	0.1	10

MAURIZIO VENTRE

#	Article	IF	CITATIONS
37	Simple yet effective methods to probe hydrogel stiffness for mechanobiology. Scientific Reports, 2021, 11, 22668.	1.6	9
38	Biodegradable Material for the Absorption of Organic Compounds and Nanoparticles. Biomacromolecules, 2014, 15, 3321-3327.	2.6	8
39	A straightforward method to produce decellularized dermis-based matrices for tumour cell cultures. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e71-e81.	1.3	8
40	Topographic Cues Impact on Embryonic Stem Cell Zscan4-Metastate. Frontiers in Bioengineering and Biotechnology, 2020, 8, 178.	2.0	7
41	Implicit constitutive equations in the modeling of bimodular materials: An application to biomaterials. Computers and Mathematics With Applications, 2007, 53, 209-218.	1.4	6
42	Soft Tissues Characteristics and Strategies for Their Replacement and Regeneration. , 2009, , 1-40.		6
43	Pressureless sintering of ZnO thin film on plastic substrate via vapor annealing process at near-room temperature. Scripta Materialia, 2019, 164, 48-51.	2.6	4
44	Nanoscaffolds for neural regenerative medicine. , 2020, , 47-88.		4
45	Dynamic Cell Substrates: Spatio-Temporal Control of Dynamic Topographic Patterns on Azopolymers for Cell Culture Applications (Adv. Funct. Mater. 42/2016). Advanced Functional Materials, 2016, 26, 7743-7743.	7.8	3
46	Decellularized matrices for tumor cell modeling. Methods in Cell Biology, 2020, 157, 169-183.	0.5	3
47	Research in Biomaterials and Tissue Engineering: Achievements and perspectives. IEEE Pulse, 2015, 6, 39-43.	0.1	2
48	Nanoengineered materials to control cell fate. Nanomedicine, 2016, 11, 993-996.	1.7	2
49	Dynamic cell instructive platforms. , 2021, , 171-217.		1
50	Morphological analysis framework of living cells by digital holography. , 2014, , .		1
51	A role for nuclear stretching and NPCs changes in the cytoplasmic-nuclear trafficking of YAP: An experimental and numerical modelling approach. Materials Today Bio, 2022, 15, 100335.	2.6	1
52	Natural composites: structure–property relationships in bone, cartilage, ligament and tendons. , 2010, , 3-24.		0
53	New method of 3D tracking of in vitro cells by digital holographic microscopy. , 2013, , .		0
54	Sparsity-based denoising method of wrapped-phase reconstructions in digital holography. , 2013, , .		0

#	Article	IF	CITATIONS
55	New method of holographic three-dimensional tracking of living cells exploiting their morphological properties. , 2013, , .		0
56	Imaging and characterization of surface relief gratings on azopolymer by digital holographic microscopy. , 2015, , .		0
57	Role of the cell-material interface on collective cell behavior. , 2021, , 113-141.		0
58	Principles of design and engineering of cell instructive surfaces. , 2021, , 143-170.		0
59	The dynamics of the cell-material interface. , 2021, , 43-64.		0
60	Material cytoskeleton crosstalk. , 2021, , 65-112.		0
61	Key determinants of cell-material interactions. , 2021, , 5-41.		0
62	Holographic Three-Dimensional Tracking of Micro-objects Exploiting Their Morphological Properties. , 2014, , 555-558.		0