Yuri Pyatnitsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8796577/publications.pdf Version: 2024-02-01

Υπρι Ρυλτνιτςκυ

#	Article	IF	CITATIONS
1	A two-step strategy for the selective conversion of ethanol to propene and hydrogen. Chemical Papers, 2021, 75, 5773-5779.	2.2	3
2	Low-Temperature Steam Reforming of Ethanol Over Iron Catalysts on Oxide and Carbon Supports. Theoretical and Experimental Chemistry, 2020, 56, 192-198.	0.8	1
3	Efficient hydrogen production by steam reforming of ethanol over ferrite catalysts. Catalysis and Petrochemistry, 2020, , 1-10.	0.3	0
4	Catalytic two-step process for the production of propylene from bioethanol. Theoretical and Experimental Chemistry, 2019, 55, 50-55.	0.8	7
5	Steam Reforming of Ethanol on Ferrites. Theoretical and Experimental Chemistry, 2018, 54, 349-357.	0.8	6
6	Nanosize Effect in Heterogeneous Catalytic Processes Over Copper, Iron, and Zirconium Oxides. Theoretical and Experimental Chemistry, 2017, 53, 305-314.	0.8	2
7	Ferrites MFe2O4 (M = Mg, Mn, Fe, Zn) as Catalysts for Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2016, 52, 246-251.	0.8	1
8	Effect of Temperature on the Equilibrium Yield of Propylene in Catalytic Processes of Ethanol Conversion. Theoretical and Experimental Chemistry, 2016, 52, 175-183.	0.8	4
9	Catalytic Properties of CuFe2O4 in Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2015, 51, 230-235.	0.8	5
10	Catalytic Properties of MnO, Fe2O3, and MnFe2O4 in the Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2014, 50, 245-249.	0.8	5
11	Influence of the Composition of Nanosized MFe2O4 Spinels (M = Ni, Co, Mn) on Their Catalytic Properties in the Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2013, 49, 185-192.	0.8	6
12	Production of Hydrogen by Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2013, 49, 277-297.	0.8	14
13	Relationship between yield of hydrogen in steam reforming of ethanol and selectivity with respect to carbon-containing products. Theoretical and Experimental Chemistry, 2013, 49, 109-114.	0.8	5
14	Sulfur resistance of binary Cu–Ni-oxide composites based on yttrium-stabilized zirconia doped with Pd, Pt, Rh in the oxidative conversion of methane. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 75-85.	1.7	2
15	Catalysis of steam reforming of ethanol by nanosized manganese ferrite for hydrogen production. Theoretical and Experimental Chemistry, 2012, 48, 129-134.	0.8	10
16	Two signed seventeenth century icons of the Cretan school from the hermitage museum. Zograf, 2012, , 189-197.	0.0	0
17	Effect of crystalline modification of the support on the reduction and catalytic properties of Cu/ZrO2 catalysts in the steam reforming of bioethanol. Theoretical and Experimental Chemistry, 2011, 47, 324-330.	0.8	9
18	Effect of the mobility of oxygen in perovskite catalyst on the dynamics of oxidative coupling of methane. Theoretical and Experimental Chemistry, 2011, 47, 49-54.	0.8	3

Yuri Pyatnitsky

#	Article	IF	CITATIONS
19	Kinetic modeling for the conversion of synthesis gas to dimethyl ether on a mixed Cu-ZnO-Al2O3 catalyst with γ-Al2O3. Theoretical and Experimental Chemistry, 2009, 45, 325-330.	0.8	10
20	Methane oxidative coupling over SrCoO3-based perovskites in periodic regime. Topics in Catalysis, 2000, 11/12, 229-237.	2.8	7
21	Kinetic aspects of the methane oxidative coupling at elevated pressures. Catalysis Today, 1998, 42, 233-240.	4.4	7
22	Some kinetic aspects of unsteady-state partial oxidation reactions. Dynamic processes on metal oxide surfaces. Catalysis Today, 1996, 32, 21-28.	4.4	10
23	Some new approaches to the competitive catalytic reaction kinetics. Applied Catalysis A: General, 1994, 113, 9-28.	4.3	7
24	Mechanism of oxygen effect on hyrogenation rate of CO over palladium catalysts. Reaction Kinetics and Catalysis Letters, 1992, 47, 299-304.	0.6	2
25	On the mechanism of auto-oscillations in CO hydrogenation on supported palladium catalysts. Reaction Kinetics and Catalysis Letters, 1991, 44, 499-503.	0.6	7
26	Effect of combination of heterogeneous catalytic reactions with a common reagent on their rates. Reaction Kinetics and Catalysis Letters, 1989, 39, 107-113.	0.6	4
27	Formation of aromatic hydrocarbons in CO hydrogenation over silica gel-supported palladium. Reaction Kinetics and Catalysis Letters, 1989, 38, 39-44.	0.6	0
28	Mutual effect of benzene and maleic acid anhydride in their adsorption on V2O5â^'MoO3 catalysts. Reaction Kinetics and Catalysis Letters, 1986, 31, 181-185.	0.6	1
29	Influence of conjugate reoxidation of the surface on the oxidation kinetics of alkylaromatic compounds over V2O5 and V2O5â^'TiO2 catalysts. Reaction Kinetics and Catalysis Letters, 1984, 26, 173-177.	0.6	6
30	TPD studies on the adsorption of benzene over an oxidized vanadium-molybdenum catalyst at high temperatures. Reaction Kinetics and Catalysis Letters, 1983, 23, 99-102.	0.6	3
31	Oxidation of benzene over palladium. Reaction Kinetics and Catalysis Letters, 1983, 23, 107-111.	0.6	5
32	Homogeneous catalytic oxidation of pyrocatechol in the presence of transition metal ions. Reaction Kinetics and Catalysis Letters, 1980, 13, 373-378.	0.6	3
33	On the mechanism of pyrocatechol oxidation in aqueous solutions containing Cu(II) and amino acids. Reaction Kinetics and Catalysis Letters, 1980, 13, 379-383.	0.6	1
34	Effect of the active component concentration in supported catalyst on the selectivity. Reaction Kinetics and Catalysis Letters, 1976, 5, 345-351.	0.6	12
35	On the mechanism of the heterogeneous catalytic oxidation of aromatic hydrocarbons. Reaction Kinetics and Catalysis Letters, 1975, 2, 143-149.	0.6	12