David J Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8796213/publications.pdf Version: 2024-02-01

DAVID I THOMAS

#	Article	IF	CITATIONS
1	Ingestion of remediated lead-contaminated soils affects the fecal microbiome of mice. Science of the Total Environment, 2022, 837, 155797.	8.0	3
2	Evaluating the mouse model for estimation of arsenic bioavailability: Comparison of estimates of absolute bioavailability of inorganic arsenic in mouse, humans, and other species. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 815-825.	2.3	2
3	Improving the predictive value of bioaccessibility assays and their use to provide mechanistic insights into bioavailability for toxic metals/metalloids – A research prospectus. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2021, 24, 307-324.	6.5	9
4	Arsenic methylation – Lessons from three decades of research. Toxicology, 2021, 457, 152800.	4.2	30
5	High Lead Bioavailability of Indoor Dust Contaminated with Paint Lead Species. Environmental Science & Technology, 2021, 55, 402-411.	10.0	23
6	Bioavailable soil Pb minimized by in situ transformation to plumbojarosite. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
7	Plumbojarosite Remediation of Soil Affects Lead Speciation and Elemental Interactions in Soil and in Mice Tissues. Environmental Science & Technology, 2021, 55, 15950-15960.	10.0	13
8	Arsenic Metabolism in Mice Carrying a <i>BORCS7/AS3MT</i> Locus Humanized by Syntenic Replacement. Environmental Health Perspectives, 2020, 128, 87003.	6.0	27
9	Intra- and Interlaboratory Evaluation of an Assay of Soil Arsenic Relative Bioavailability in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 2615-2622.	5.2	7
10	Dietary Lead and Phosphate Interactions Affect Oral Bioavailability of Soil Lead in the Mouse. Environmental Science & Technology, 2019, 53, 12556-12564.	10.0	24
11	Dose and Diet – Sources of Arsenic Intake in Mouse <i>in Utero</i> Exposure Scenarios. Chemical Research in Toxicology, 2018, 31, 156-164.	3.3	18
12	In vivo and in vitro methods for evaluating soil arsenic bioavailability: relevant to human health risk assessment. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 83-114.	6.5	45
13	Comparison of mouse and swine bioassays for determination of soil arsenic relative bioavailability. Applied Geochemistry, 2018, 88, 221-225.	3.0	10
14	Long-Term in Situ Reduction in Soil Lead Bioavailability Measured in a Mouse Model. Environmental Science & Technology, 2018, 52, 13908-13913.	10.0	41
15	Arsenic and Environmental Health: State of the Science and Future Research Opportunities. Environmental Health Perspectives, 2016, 124, 890-899.	6.0	235
16	Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 165-173.	2.3	36
17	Estimating relative bioavailability of soil lead in the mouse. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 1179-1182.	2.3	24
18	Independent Data Validation of an in Vitro Method for the Prediction of the Relative Bioavailability of Arsenic in Contaminated Soils. Environmental Science & Technology, 2015, 49, 6312-6318.	10.0	43

DAVID J THOMAS

#	Article	IF	CITATIONS
19	Variability Associated with As in Vivo–in Vitro Correlations When Using Different Bioaccessibility Methodologies. Environmental Science & Technology, 2014, 48, 11646-11653.	10.0	69
20	AS3MT, GSTO, and PNP polymorphisms: Impact on arsenic methylation and implications for disease susceptibility. Environmental Research, 2014, 132, 156-167.	7.5	107
21	Effect of dietary treatment with dimethylarsinous acid (DMAIII) on the urinary bladder epithelium of arsenic (+3 oxidation state) methyltransferase (As3mt) knockout and C57BL/6 wild type female mice. Toxicology, 2013, 305, 130-135.	4.2	19
22	Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 815-826.	2.3	36
23	Methylation of arsenic by recombinant human wild-type arsenic (+ 3 oxidation state) methyltransferase and its methionine 287 threonine (M287T) polymorph: Role of glutathione. Toxicology and Applied Pharmacology, 2012, 264, 121-130.	2.8	46
24	Relative Bioavailability and Bioaccessibility and Speciation of Arsenic in Contaminated Soils. Environmental Health Perspectives, 2011, 119, 1629-1634.	6.0	156
25	Effect of Sodium Arsenite Dose Administered in the Drinking Water on the Urinary Bladder Epithelium of Female Arsenic (+3 Oxidation State) Methyltransferase Knockout Mice. Toxicological Sciences, 2011, 121, 257-266.	3.1	42
26	Arsenic Exposure and Toxicology: A Historical Perspective. Toxicological Sciences, 2011, 123, 305-332.	3.1	1,009
27	Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice. Toxicology and Applied Pharmacology, 2010, 249, 217-223.	2.8	63
28	Impact of life stage and duration of exposure on arsenic-induced proliferative lesions and neoplasia in C3H mice. Toxicology, 2009, 262, 106-113.	4.2	26
29	Disruption of the Arsenic (+3 Oxidation State) Methyltransferase Gene in the Mouse Alters the Phenotype for Methylation of Arsenic and Affects Distribution and Retention of Orally Administered Arsenate. Chemical Research in Toxicology, 2009, 22, 1713-1720.	3.3	145
30	Oxidation state specific generation of arsines from methylated arsenicals based on l-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 396-406.	2.9	81
31	shRNA Silencing of AS3MT Expression Minimizes Arsenic Methylation Capacity of HepG2 Cells. Chemical Research in Toxicology, 2006, 19, 894-898.	3.3	74
32	Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation) Tj ETQq0 0 0 rg	3BT/Qverlo 2.8	ock 10 Tf 50 2
33	Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes. Toxicology and Applied Pharmacology, 2004, 201, 166-177.	2.8	78
34	Endogenous Reductants Support the Catalytic Function of Recombinant Rat Cyt19, an Arsenic Methyltransferase. Chemical Research in Toxicology, 2004, 17, 404-409.	3.3	111
35	Selenium Compounds Modulate the Activity of Recombinant Rat AsIII-Methyltransferase and the Methylation of Arsenite by Rat and Human Hepatocytes. Chemical Research in Toxicology, 2003, 16, 261-265.	3.3	78
36	A Novel S-Adenosyl-l-methionine:Arsenic(III) Methyltransferase from Rat Liver Cytosol. Journal of Biological Chemistry, 2002, 277, 10795-10803.	3.4	299

David J Thomas

#	Article	IF	CITATIONS
37	Methylated Trivalent Arsenic Species Are Genotoxic. Chemical Research in Toxicology, 2001, 14, 355-361.	3.3	479
38	Arsenicals Inhibit Thioredoxin Reductase in Cultured Rat Hepatocytes. Chemical Research in Toxicology, 2001, 14, 305-311.	3.3	152
39	Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology, 2000, 74, 289-299.	4.2	881
40	Methylarsenicals and Arsinothiols Are Potent Inhibitors of Mouse Liver Thioredoxin Reductase. Chemical Research in Toxicology, 1999, 12, 924-930.	3.3	217
41	Metabolism of Arsenic in Primary Cultures of Human and Rat Hepatocytes. Chemical Research in Toxicology, 1999, 12, 560-565.	3.3	132
42	Comparative Inhibition of Yeast Glutathione Reductase by Arsenicals and Arsenothiols. Chemical Research in Toxicology, 1997, 10, 27-33.	3.3	272