
Michael J Mcshane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/879621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inorganic–Organic Interpenetrating Network Hydrogels as Tissueâ€Integrating Luminescent Implants: Physicochemical Characterization and Preclinical Evaluation. Macromolecular Bioscience, 2022, 22, e2100380.	2.1	6
2	Process for Faculty-Driven, Data-Informed Curriculum Continuity Review in Biomedical Engineering. Biomedical Engineering Education, 2022, 2, 265-280.	0.6	3
3	A Glucose Biosensor Based on Phosphorescence Lifetime Sensing and a Thermoresponsive Membrane. Macromolecular Rapid Communications, 2022, 43, e2100902.	2.0	6
4	A One Inch in Diameter Point-of-Care Reader Head for the Measurement of Different Bio-Analytes Concentrations. , 2022, , .		0
5	Skin optical properties in the obese and their relation to body mass index: a review. Journal of Biomedical Optics, 2022, 27, .	1.4	6
6	Monte Carlo method for assessment of a multimodal insertable biosensor. Journal of Biomedical Optics, 2022, 27, .	1.4	3
7	Implantable Sensors. , 2022, , .		1
8	A Versatile Multichannel Instrument for Measurement of Ratiometric Fluorescence Intensity and Phosphorescence Lifetime. IEEE Access, 2021, 9, 103835-103849.	2.6	7
9	Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors, 2021, 11, 126.	2.3	128
10	Assembly and Transport Properties of Nanoscale Biopolyelectrolyte Multilayers. Coatings, 2021, 11, 1024.	1.2	0
11	Comparison of SERS pH probe responses after microencapsulation within hydrogel matrices. Journal of Biomedical Optics, 2021, 26, .	1.4	1
12	An Optical Urate Biosensor Based on Urate Oxidase and Long-Lifetime Metalloporphyrins. Sensors, 2020, 20, 959.	2.1	12
13	Hydrogel Microdomain Encapsulation of Stable Functionalized Silver Nanoparticles for SERS pH and Urea Sensing. Sensors, 2019, 19, 3521.	2.1	12
14	Multidomain-Based Responsive Materials with Dual-Mode Optical Readouts. ACS Applied Materials & Interfaces, 2019, 11, 14286-14295.	4.0	15
15	Real-time continuous glucose sensing of implantable probes using SERS. , 2019, , .		0
16	Evaluating hydrogels for implantable probes using SERS. , 2019, , .		1
17	Nanoengineered capsules for selective SERS analysis of biological samples. , 2018, , .		0
18	SERS-Active Smart Hydrogels With Modular Microdomains: From pH to Glucose Sensing. IEEE Sensors Journal, 2017, 17, 941-950.	2.4	13

#	Article	IF	CITATIONS
19	Gold Nanocluster Containing Polymeric Microcapsules for Intracellular Ratiometric Fluorescence Biosensing. ACS Omega, 2017, 2, 2499-2506.	1.6	31
20	Composite Hydrogels Containing Bioactive Microreactors for Optical Enzymatic Lactate Sensing. ACS Sensors, 2017, 2, 1584-1588.	4.0	33
21	Composite Hydrogels with Engineered Microdomains for Optical Glucose Sensing at Low Oxygen Conditions. Biosensors, 2017, 7, 8.	2.3	34
22	Albuminated Glycoenzymes: Enzyme Stabilization through Orthogonal Attachment of a Single-Layered Protein Shell around a Central Glycoenzyme Core. Bioconjugate Chemistry, 2016, 27, 1285-1292.	1.8	1
23	Cross-linked nanofilms for tunable permeability control in a composite microdomain system. RSC Advances, 2016, 6, 71781-71790.	1.7	14
24	Sequential Thiol–Ene and Tetrazine Click Reactions for the Polymerization and Functionalization of Hydrogel Microparticles. Biomacromolecules, 2016, 17, 3516-3523.	2.6	55
25	IEEE Council Representatives Reports. IEEE Instrumentation and Measurement Magazine, 2016, 19, 51-58.	1.2	Ο
26	Guest Editorial Special Issue on Selected Papers From the IEEE Sensors Conference 2014. IEEE Sensors Journal, 2016, 16, 3348-3348.	2.4	0
27	Hybrid Inorganic-Organic Interpenetrating Network Hydrogels as Optical Biosensors. , 2016, , .		1
28	Layer-by-layer modification of high surface curvature nanoparticles with weak polyelectrolytes using a multiphase solvent precipitation process. Journal of Colloid and Interface Science, 2016, 466, 432-441.	5.0	11
29	Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels. Biosensors, 2015, 5, 398-416.	2.3	28
30	SERS-based hydrogel sensors for pH and enzymatic substrates. , 2015, , .		1
31	Preclinical Evaluation of Poly(HEMA-co-acrylamide) Hydrogels Encapsulating Glucose Oxidase and Palladium Benzoporphyrin as Fully Implantable Glucose Sensors. Journal of Diabetes Science and Technology, 2015, 9, 985-992.	1.3	33
32	Temperature Compensation of Oxygen Sensing Films Utilizing a Dynamic Dual Lifetime Calculation Technique. IEEE Sensors Journal, 2014, 14, 2755-2764.	2.4	10
33	Fabrication of Nanocapsule Carriers from Multilayer-Coated Vaterite Calcium Carbonate Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 21193-21201.	4.0	26
34	Modification of PEGylated enzyme with glutaraldehyde can enhance stability while avoiding intermolecular crosslinking. RSC Advances, 2014, 4, 28036-28040.	1.7	9
35	Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles. Journal of Colloid and Interface Science, 2014, 418, 366-372.	5.0	46
36	Time-resolved measurements of luminescence. Journal of Luminescence, 2013, 144, 180-190.	1.5	37

#	Article	IF	CITATIONS
37	Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity. Enzyme and Microbial Technology, 2013, 52, 279-285.	1.6	18
38	A design full of holes: functional nanofilm-coated microdomains in alginate hydrogels. Journal of Materials Chemistry B, 2013, 1, 3195.	2.9	28
39	Enzymatic glucose sensor compensation for variations in ambient oxygen concentration. , 2013, 8591, .		2
40	Processing and Characterization of Stable, pH-Sensitive Layer-by-Layer Modified Colloidal Quantum Dots. ACS Nano, 2013, 7, 6194-6202.	7.3	31
41	In vitro evaluation of chondrosarcoma cells and canine chondrocytes on layer-by-layer (LbL) self-assembled multilayer nanofilms. Biofabrication, 2013, 5, 015004.	3.7	1
42	BEHAVIOR OF ARTICULAR CHONDROCYTES ON NANOENGINEERED SURFACES. Nano LIFE, 2013, 03, 1342001.	0.6	0
43	Chondrocyte Behavior on Micropatterns Fabricated Using Layer-by-Layer Lift-Off: Morphological Analysis. Journal of Medical Engineering, 2013, 2013, 1-12.	1.1	4
44	<i>In vitro</i> performance of a perfusion and oxygenation optical sensor using a unique liver phantom. , 2012, , .		3
45	Performance assessment of an opto-fluidic phantom mimicking porcine liver parenchyma. Journal of Biomedical Optics, 2012, 17, 0770081.	1.4	5
46	High-throughput spectral system for interrogation of dermally-implanted luminescent sensors. , 2012, 2012, 2351-4.		0
47	Dynamic Windowing Algorithm for the Fast and Accurate Determination of Luminescence Lifetimes. Analytical Chemistry, 2012, 84, 4725-4731.	3.2	20
48	Design of an Optical System for Interrogation of Implanted Luminescent Sensors and Verification with Silicone Skin Phantoms. IEEE Transactions on Biomedical Engineering, 2012, 59, 2459-2465.	2.5	2
49	Biofouling of Polymer Hydrogel Materials and its Effect on Diffusion and Enzyme-Based Luminescent Glucose Sensor Functional Characteristics. Journal of Diabetes Science and Technology, 2012, 6, 1267-1275.	1.3	24
50	Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 2012, 24, 728-737.	3.2	206
51	Microparticle ratiometric oxygen sensors utilizing near-infrared emitting quantum dots. Analyst, The, 2011, 136, 962-967.	1.7	34
52	Simultaneous, accurate lifetime determination of two luminophores using time-domain techniques. , 2011, , .		1
53	Enzyme Immobilization in Polyelectrolyte Microcapsules. Methods in Molecular Biology, 2011, 679, 147-154.	0.4	6
54	Optofluidic phantom mimicking optical properties of porcine livers. Biomedical Optics Express, 2011, 2, 1877.	1.5	25

#	Article	IF	CITATIONS
55	Optimizing probe design for an implantable perfusion and oxygenation sensor. Biomedical Optics Express, 2011, 2, 2096.	1.5	13
56	Layer-by-layer assembly for drug delivery and related applications. Expert Opinion on Drug Delivery, 2011, 8, 633-644.	2.4	107
57	Growth and behaviour of bovine articular chondrocytes on nanoengineered surfaces: Part I. International Journal of Nanotechnology, 2011, 8, 679.	0.1	2
58	Role of porosity in tuning the response range of microsphere-based glucose sensors. Biosensors and Bioelectronics, 2011, 26, 2478-2483.	5.3	11
59	In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: Towards localized implant inflammation suppression. International Journal of Pharmaceutics, 2011, 403, 268-275.	2.6	39
60	Optimizing source detector separation for an implantable perfusion and oxygenation sensor. , 2011, , .		5
61	Incorporation of optical enzymatic sensing chemistry into biocompatible hydrogels. , 2011, , .		2
62	"Smart Tattoo―Glucose Biosensors and Effect of Coencapsulated Anti-Inflammatory Agents. Journal of Diabetes Science and Technology, 2011, 5, 76-85.	1.3	32
63	Glucose Response of Near-Infrared Alginate-Based Microsphere Sensors Under Dynamic Reversible Conditions. Diabetes Technology and Therapeutics, 2011, 13, 827-835.	2.4	13
64	Mitigation of Quantum Dot Cytotoxicity by Microencapsulation. PLoS ONE, 2011, 6, e22079.	1.1	35
65	Optimizing probe design for an implantable perfusion and oxygenation sensor. Biomedical Optics Express, 2011, 2, 2096-109.	1.5	5
66	Dynamic testing and in vivo evaluation of dermally implantable luminescent microparticle glucose sensors. Proceedings of SPIE, 2010, , .	0.8	1
67	Enhancing the longevity of microparticle-based glucose sensors towards 1 month continuous operation. Biosensors and Bioelectronics, 2010, 25, 1075-1081.	5.3	31
68	Three-dimensional, multiwavelength Monte Carlo simulations of dermally implantable luminescent sensors. Journal of Biomedical Optics, 2010, 15, 027011.	1.4	8
69	Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor. Analyst, The, 2010, 135, 2620.	1.7	24
70	Microcapsules as optical biosensors. Journal of Materials Chemistry, 2010, 20, 8189.	6.7	38
71	High-efficiency optical systems for interrogation of dermally-implanted sensors. , 2010, 2010, 1033-6.		2
72	Tuning of luminescent sensor response and degradation through manipulation of nanofilm coating properties. , 2010, , .		0

#	Article	IF	CITATIONS
73	Dual-Function Nanofilm Coatings with Diffusion Control and Protein Resistance. ACS Applied Materials & Interfaces, 2010, 2, 991-997.	4.0	21
74	Dissolved core alginate microspheres as "smart-tattoo" glucose sensors. , 2009, 2009, 4098-101.		0
75	Dual-probe luminescence lifetime measurements for the oxygen compensation in enzymatic biosensors. , 2009, , .		0
76	Nanofilms as universal coatings for biosensors. , 2009, , .		0
77	MODELING MASS TRANSFER OF FITC-LABELED DEXTRAN FROM POLYELECTROLYTE MICROCAPSULES. Chemical Engineering Communications, 2009, 196, 812-823.	1.5	1
78	Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolvedâ€core alginate microspheres. Biotechnology and Bioengineering, 2009, 104, 1075-1085.	1.7	23
79	Experimental validation of an optical system for interrogation of dermally-implanted microparticle sensors. , 2009, 2009, 122-5.		3
80	Polyelectrolyte-coated alginate microspheres as drug delivery carriers for dexamethasone release. Drug Delivery, 2009, 16, 331-340.	2.5	45
81	Supported Nanocomposite Membranes: Bridging Microtechnology with Nanotechnology. Journal of Nanoscience and Nanotechnology, 2009, 9, 2965-2969.	0.9	1
82	Encapsulated Probes. , 2009, , 1-21.		0
83	Microcapsules Ejecting Nanosized Species into the Environment. Journal of the American Chemical Society, 2008, 130, 14480-14482.	6.6	71
84	Polymer/Colloid Surface Micromachining: Micropatterning of Hybrid Multilayers. Langmuir, 2008, 24, 13796-13803.	1.6	7
85	Microscale Enzymatic Optical Biosensors Using Mass Transport Limiting Nanofilms. 2. Response Modulation by Varying Analyte Transport Properties. Analytical Chemistry, 2008, 80, 1408-1417.	3.2	39
86	Nanofilm coatings for transport control and biocompatibility. , 2008, , .		1
87	Optical instrument design for interrogation of dermally-implanted luminescent microparticle sensors. , 2008, 2008, 5656-9.		4
88	Stability of response and in vivo potential of microparticle glucose sensors. Proceedings of SPIE, 2008, , .	0.8	2
89	Near-Infrared Resonance Energy Transfer Glucose Biosensors in Hybrid Microcapsule Carriers. Journal of Sensors, 2008, 2008, 1-11.	0.6	13
90	Modeling of Selective Photon Capture for Collection of Fluorescence Emitted from Dermally-Implanted Microparticle Sensors. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 2972-5.	0.5	3

#	Article	IF	CITATIONS
91	Assembly and testing of microparticle and microcapsule smart tattoo materials. , 2007, , .		0
92	Microscale Enzymatic Optical Biosensors Using Mass Transport Limiting Nanofilms. 1. Fabrication and Characterization Using Glucose as a Model Analyte. Analytical Chemistry, 2007, 79, 1339-1348.	3.2	76
93	Encapsulation of Peroxidase by Polymerizing Acrylic Acid Monomers in "Clean" Polyelectrolyte Microcapsules. Journal of Biomedical Nanotechnology, 2007, 3, 170-177.	0.5	14
94	Real-Time Assessment of Spatial and Temporal Coupled Catalysis within Polyelectrolyte Microcapsules Containing Coimmobilized Glucose Oxidase and Peroxidase. Biomacromolecules, 2006, 7, 710-719.	2.6	99
95	Microcapsules as "Smart Tattoo―Glucose Sensors: Engineering Systems with Enzymes and Glucose-Binding Sensing Elements. , 2006, , 131-163.		11
96	Synthesis and functionalization of monodisperse poly(ethylene glycol) hydrogel microspheres within polyelectrolyte multilayer microcapsules. Chemical Communications, 2006, , 153-155.	2.2	17
97	Fabrication of Interdigitated Micropatterns of Self-Assembled Polymer Nanofilms Containing Cell-Adhesive Materials. Langmuir, 2006, 22, 2738-2746.	1.6	37
98	Enzymatic Fluorescent Microsphere Glucose Sensors:Evaluation of Response Under Dynamic Conditions. Diabetes Technology and Therapeutics, 2006, 8, 288-295.	2.4	31
99	Modeling of spherical fluorescent glucose microsensor systems: Design of enzymatic smart tattoos. Biosensors and Bioelectronics, 2006, 21, 1760-1769.	5.3	60
100	Study of the near-neutral pH-sensitivity of chitosan/gelatin hydrogels by turbidimetry and microcantilever deflection. Biotechnology and Bioengineering, 2006, 95, 333-341.	1.7	71
101	Transduction of Volume Change in pH-Sensitive Hydrogels with Resonance Energy Transfer. Advanced Materials, 2006, 18, 2289-2293.	11.1	17
102	Glucose Sensors Based on Microcapsules Containing an Orange/Red Competitive Binding Resonance Energy Transfer Assay. Diabetes Technology and Therapeutics, 2006, 8, 269-278.	2.4	31
103	Fluorescence Glucose Monitoring Based on Transduction of Enzymatically-Driven pH Changes Within Microcapsules. Sensor Letters, 2006, 4, 433-439.	0.4	17
104	Growth and behavior of chondrocytes on nanocomposite ultrathin films. FASEB Journal, 2006, 20, A25.	0.2	1
105	A Monte Carlo simulation of photon propagation in fluorescent poly(ethylene glycol) hydrogel microsensors. Sensors and Actuators B: Chemical, 2005, 105, 365-377.	4.0	8
106	Encapsulation of glucose oxidase and an oxygen-quenched fluorophore in polyelectrolyte-coated calcium alginate microspheres as optical glucose sensor systems. Biosensors and Bioelectronics, 2005, 21, 212-216.	5.3	115
107	Influence of channel width on alignment of smooth muscle cells by high-aspect-ratio microfabricated elastomeric cell culture scaffolds. Journal of Biomedical Materials Research - Part A, 2005, 75A, 106-114.	2.1	34
108	Stabilization of glucose oxidase in alginate microspheres with photoreactive diazoresin nanofilm coatings. Biotechnology and Bioengineering, 2005, 91, 124-131.	1.7	53

#	Article	IF	CITATIONS
109	Stable Encapsulation of Active Enzyme by Application of Multilayer Nanofilm Coatings to Alginate Microspheres. Macromolecular Bioscience, 2005, 5, 717-727.	2.1	84
110	Comparison of Selective Attachment and Growth of Smooth Muscle Cells on Gelatin- and Fibronectin-Coated Micropatterns. Journal of Nanoscience and Nanotechnology, 2005, 5, 1809-1815.	0.9	26
111	Experimental and Theoretical Aspects of Glucose Measurement Using a Microcantilever Modified by Enzyme-Containing Polyacrylamide. Diabetes Technology and Therapeutics, 2005, 7, 986-995.	2.4	8
112	Core-referenced ratiometric fluorescent potassium ion sensors using self-assembled ultrathin films on europium nanoparticles. IEEE Sensors Journal, 2005, 5, 1197-1205.	2.4	30
113	Cellular Response to Gelatin- and Fibronectin-Coated Multilayer Polyelectrolyte Nanofilms. IEEE Transactions on Nanobioscience, 2005, 4, 170-179.	2.2	25
114	Macromolecule Encapsulation in Diazoresin-Based Hollow Polyelectrolyte Microcapsules. Langmuir, 2005, 21, 424-430.	1.6	109
115	Combined Physical and Chemical Immobilization of Glucose Oxidase in Alginate Microspheres Improves Stability of Encapsulation and Activity. Bioconjugate Chemistry, 2005, 16, 1451-1458.	1.8	141
116	Nanoscale internally referenced oxygen sensors produced from self-assembled nanofilms on fluorescent nanoparticles. Journal of Biomedical Optics, 2005, 10, 064031.	1.4	25
117	Spontaneous Loading of Positively Charged Macromolecules into Alginate-Templated Polyelectrolyte Multilayer Microcapsules. Biomacromolecules, 2005, 6, 2221-2228.	2.6	100
118	Microcapsule Biosensors Using Competitive Binding Resonance Energy Transfer Assays Based on Apoenzymes. Analytical Chemistry, 2005, 77, 5501-5511.	3.2	94
119	Application of self-assembled ultra-thin film coatings to stabilize macromolecule encapsulation in alginate microspheres. Journal of Microencapsulation, 2005, 22, 397-411.	1.2	32
120	Loading of Hydrophobic Materials into Polymer Particles:Â Implications for Fluorescent Nanosensors and Drug Delivery. Journal of the American Chemical Society, 2005, 127, 13448-13449.	6.6	79
121	Synthesis of Size-Controlled Monodisperse Manganese Carbonate Microparticles as Templates for Uniform Polyelectrolyte Microcapsule Formation. Chemistry of Materials, 2005, 17, 2323-2328.	3.2	95
122	Nanoassembly of immobilized ligninolytic enzymes for biocatalysis, bioremediation, and biosensing. , 2004, , .		1
123	Cell adhesion testing using novel testbeds containing micropatterns of complex nanoengineered multilayer films. , 2004, 2004, 2671-4.		3
124	Bulk micromachining of a MEMS tunable Fabry-Perot interferometer: effect of residual silicon on device performance. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2004, 3, 579.	1.0	1
125	Self-assembly of polymer/nanoparticle films for fabrication of fiber optic sensors based on SPR. , 2004, , .		3
126	Glucose-Sensitive Nanoassemblies Comprising Affinity-Binding Complexes Trapped in Fuzzy Microshells. Journal of Fluorescence, 2004, 14, 585-595.	1.3	62

#	Article	IF	CITATIONS
127	Study of transport phenomena of FITC labeled dextran through nano self assembled microshells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 245, 137-142.	2.3	11
128	Fabrication of 3-D Gelatin-Patterned Glass Substrates With Layer-by-Layer and Lift-Off (LbL–LO) Technology. IEEE Nanotechnology Magazine, 2004, 3, 115-123.	1.1	10
129	Micropatterning of Nanoengineered Surfaces to Study Neuronal Cell Attachment in Vitro. Biomacromolecules, 2004, 5, 1745-1755.	2.6	67
130	Resonance Energy Transfer Nanobiosensors Based on Affinity Binding between Apo-Enzyme and Its Substrate. Biomacromolecules, 2004, 5, 1657-1661.	2.6	46
131	Glucose micro- and nanosensors based on nanoassembled enzyme/polymer/dye composites. Proceedings of SPIE, 2004, , .	0.8	3
132	Integrated micro-/nanofabrication of cell culture scaffolds with selective cell adhesion and fluorescent indicators. , 2004, , .		0
133	Electrostatic self-assembly of nanocomposite hybrid fluorescent sensors. , 2004, , .		2
134	EMBS 2002 student paper finalists - Nanoengineered polyelectrolyte micro- and nano-capsules as fluorescent potassium ion sensors. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 118-123.	1.1	16
135	Development of multilayer fluorescent thin film chemical sensors using electrostatic self-assembly. IEEE Sensors Journal, 2003, 3, 139-146.	2.4	52
136	Multilayer lactate oxidase shells on colloidal carriers as engines for nanosensors. IEEE Transactions on Nanobioscience, 2003, 2, 133-137.	2.2	15
137	Potential for Glucose Monitoring with Nanoengineered Fluorescent Biosensors. Diabetes Technology and Therapeutics, 2002, 4, 533-538.	2.4	79
138	Polyelectrolyte Microshells as Carriers for Fluorescent Sensors: Loading and Sensing Properties of a Ruthenium-Based Oxygen Indicator. Journal of Nanoscience and Nanotechnology, 2002, 2, 411-416.	0.9	58
139	<title>Microfabricated interferometer and integrated fluidic channel for infrared spectroscopy of aqueous samples</title> ., 2002, , .		6
140	<title>Nanostructured fluorescent particles for glucose sensing</title> . , 2002, 4624, 47.		4
141	<title>Nanoassembled fluorescent microshells as biochemical sensors</title> ., 2002, , .		8
142	Magnetic Bio/Nanoreactor with Multilayer Shells of Glucose Oxidase and Inorganic Nanoparticles. Langmuir, 2002, 18, 6338-6344.	1.6	131
143	Electrostatic self-assembly of a ruthenium-based oxygen sensitive dye using polyion–dye interpolyelectrolyte formation. Sensors and Actuators B: Chemical, 2002, 87, 336-345.	4.0	37
144	<title>Implantable biosensors: analysis of fluorescent light propagation through skin</title> . , 2001, ,		5

9

1

#	Article	IF	CITATIONS
145	<title>Progress toward implantable fluorescence-based sensors for monitoring glucose levels in interstitial fluid</title> . , 2000, , .		10
146	Monte Carlo modeling for implantable fluorescent analyte sensors. IEEE Transactions on Biomedical Engineering, 2000, 47, 624-632.	2.5	52
147	Glucose monitoring using implanted fluorescent microspheres. IEEE Engineering in Medicine and Biology Magazine, 2000, 19, 36-45.	1.1	51
148	A Transparent Tool for Seemingly Difficult Calibrations:Â The Parallel Calibration Method. Analytical Chemistry, 2000, 72, 135-140.	3.2	14
149	A novel peak-hopping stepwise feature selection method with application to Raman spectroscopy1This paper is dedicated to the memory of Jean Thomas Clerc: scientist, editor, luminary, and dog breeder.1. Analytica Chimica Acta, 1999, 388, 251-264.	2.6	33
150	A Fluorescence-Based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel. Analytical Chemistry, 1999, 71, 3126-3132.	3.2	343
151	Improving Complex Near-IR Calibrations Using a New Wavelength Selection Algorithm. Applied Spectroscopy, 1999, 53, 1575-1581.	1.2	17
152	<title>Peak-hopping stepwise wavelength selection algorithm</title> . , 1999, , .		3
153	<title>Probe design for implantable fluorescence-based sensors</title> . , 1999, , .		2
154	Assessment of Partial Least-Squares Calibration and Wavelength Selection for Complex Near-Infrared Spectra. Applied Spectroscopy, 1998, 52, 878-884.	1.2	34
155	Near-Infrared Spectroscopy for Determination of Glucose, Lactate, and Ammonia in Cell Culture Media. Applied Spectroscopy, 1998, 52, 1073-1078.	1.2	74
156	Theoretical Justification of Wavelength Selection in PLS Calibration:Â Development of a New Algorithm. Analytical Chemistry, 1998, 70, 35-44.	3.2	247
157	<title>Effects of temperature on the near-infrared spectroscopic measurement of glucose</title> . , 1998, , .		1
158	<title>Determination of cell culture medium components with overlapping near-IR absorbance peaks</title> . , 1998, , .		0
159	<title>Variable selection for quantitative determination of glucose concentration with near-infrared spectroscopy</title> . , 1997, , .		1
160	Variable Selection in Multivariate Calibration of a Spectroscopic Glucose Sensor. Applied Spectroscopy, 1997, 51, 1559-1564.	1.2	44
161	A fiber-optic broad-range pH sensor system for gastric measurements. Sensors and Actuators B: Chemical, 1995, 29, 157-163.	4.0	50

162 Competitive Binding Assays in Microcapsules as "Smart Tattoo" Biosensors. , 0, , .

#	Article	IF	CITATIONS
163	Transduction of pH and Glucose-Sensitive Hydrogel Swelling Through Fluorescence Resonance Energy Transfer. , 0, , .		2
164	Intrinsic optical signal imaging of a ratiometric fluorescence oxygen nanosensor. , 0, , .		0
165	Lithography Combined with Multilayer Nanoassembly: Versatile Approach to Fabricate Nanocomposite Micropatterns for Biointerfaces. , 0, , .		0
166	Electrostatic Self-Assembly: Layer-by-Layer. , 0, , 1342-1358.		4