Joey L Methot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8795955/publications.pdf

Version: 2024-02-01

687363 677142 22 515 13 22 citations h-index g-index papers 24 24 24 607 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of High-Throughput Assays for Evaluation of Hematopoietic Progenitor Kinase 1 Inhibitors. SLAS Discovery, 2021, 26, 88-99.	2.7	15
2	Identification of Potent Reverse Indazole Inhibitors for HPK1. ACS Medicinal Chemistry Letters, 2021, 12, 459-466.	2.8	16
3	Discovery of Diaminopyrimidine Carboxamide HPK1 Inhibitors as Preclinical Immunotherapy Tool Compounds. ACS Medicinal Chemistry Letters, 2021, 12, 653-661.	2.8	18
4	Projected Dose Optimization of Amino- and Hydroxypyrrolidine Purine PI3KÎ' Immunomodulators. Journal of Medicinal Chemistry, 2021, 64, 5137-5156.	6.4	7
5	Discovery of a new series of PI3K-δinhibitors from Virtual Screening. Bioorganic and Medicinal Chemistry Letters, 2021, 42, 128046.	2.2	1
6	Discovery and optimization of heteroaryl piperazines as potent and selective PI3Kδinhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126715.	2.2	9
7	Optimization of Versatile Oxindoles as Selective PI3Kl̃′Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 2461-2469.	2.8	11
8	Pharmacological inhibition of hematopoietic progenitor kinase 1 positively regulates T-cell function. PLoS ONE, 2020, 15, e0243145.	2.5	10
9	Design of selective PI3K \hat{l} inhibitors using an iterative scaffold-hopping workflow. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2575-2580.	2.2	13
10	Structure Overhaul Affords a Potent Purine PI3Kl̂ Inhibitor with Improved Tolerability. Journal of Medicinal Chemistry, 2019, 62, 4370-4382.	6.4	13
11	Characterizing Pharmacokinetic–Pharmacodynamic Relationships and Efficacy of PI3Kδ Inhibitors in Respiratory Models of TH2 and TH1 Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 223-233.	2.5	4
12	Discovery of 1-(1 <i>H</i> -Pyrazolo[4,3- <i>c</i>]pyridin-6-yl)urea Inhibitors of Extracellular Signal-Regulated Kinase (ERK) for the Treatment of Cancers. Journal of Medicinal Chemistry, 2016, 59, 6501-6511.	6.4	26
13	Discovery of novel triazolobenzazepinones as \hat{I}^3 -secretase modulators with central A \hat{I}^2 42 lowering in rodents and rhesus monkeys. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3488-3494.	2.2	14
14	Potent benzoazepinone \hat{l}^3 -secretase modulators with improved bioavailability. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3495-3500.	2.2	12
15	Delayed and Prolonged Histone Hyperacetylation with a Selective HDAC1/HDAC2 Inhibitor. ACS Medicinal Chemistry Letters, 2014, 5, 340-345.	2.8	28
16	Triazoloamides as potent \hat{l}^3 -secretase modulators with reduced hERG liability. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3140-3146.	2.2	17
17	Triazoles as Î ³ -secretase modulators. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4083-4087.	2.2	15
18	Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI-1:2) optimization. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1168-1172.	2.2	21

#	Article	IF	CITATION
19	Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorganic and Medicinal Chemistry Letters, 2008, 18, 973-978.	2.2	168
20	SAR profiles of spirocyclic nicotinamide derived selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6104-6109.	2.2	40
21	An unexpected aminocyclopropane reductive rearrangement. Tetrahedron Letters, 2008, 49, 1155-1159.	1.4	14
22	The discovery of 6-amino nicotinamides as potent and selective histone deacetylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5300-5309.	2.2	43