Andrei Mesinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8795952/publications.pdf

Version: 2024-02-01

125 8,004 51 papers citations h-index

125 125 125 2754 all docs docs citations times ranked citing authors

51608

86

g-index

#	Article	IF	CITATIONS
1	21cmfast: a fast, seminumerical simulation of the high-redshift 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2011, 411, 955-972.	4.4	533
2	Hydrogen Epoch of Reionization Array (HERA). Publications of the Astronomical Society of the Pacific, 2017, 129, 045001.	3.1	448
3	Efficient Simulations of Early Structure Formation and Reionization. Astrophysical Journal, 2007, 669, 663-675.	4.5	353
4	Model-independent evidence in favour of an end to reionization by zÂâ‰^Â6. Monthly Notices of the Royal Astronomical Society, 2015, 447, 499-505.	4.4	351
5	Reionization and the Cosmic Dawn with the Square Kilometre Array. Experimental Astronomy, 2013, 36, 235-318.	3.7	255
6	The Universe Is Reionizing at zÂâ^1⁄4Â7: Bayesian Inference of the IGM Neutral Fraction Using LyαÂEmission from Galaxies. Astrophysical Journal, 2018, 856, 2.	4.5	224
7	Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1961-1972.	4.4	221
8	21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21Âcm signal. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4246-4263.	4.4	181
9	Signatures of X-rays in the early Universe. Monthly Notices of the Royal Astronomical Society, 2013, 431, 621-637.	4.4	177
10	Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models. Monthly Notices of the Royal Astronomical Society, 2011, 414, 727-738.	4.4	165
11	Inferring the astrophysics of reionization and cosmic dawn from galaxy luminosity functions and the 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2019, 484, 933-949.	4.4	152
12	Can the intergalactic medium cause a rapid drop in Lyl± emission at zÂ>Â6?. Monthly Notices of the Royal Astronomical Society, 2015, 446, 566-577.	4.4	148
13	Inhomogeneous recombinations during cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1662-1673.	4.4	136
14	Feedback-regulated supermassive black hole seed formation. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2036-2047.	4.4	129
15	The detectability of LyÎ \pm emission from galaxies during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2139-2147.	4.4	119
16	Evidence of a Cosmological Strömgren Surface and of Significant Neutral Hydrogen Surrounding the Quasar SDSS J1030+0524. Astrophysical Journal, 2004, 611, L69-L72.	4.5	117
17	The X-ray spectra of the first galaxies: 21 cm signatures. Monthly Notices of the Royal Astronomical Society, 2014, 443, 678-686.	4.4	114
18	Evidence of Gunn–Peterson damping wings in high-z quasar spectra: strengthening the case for incomplete reionization at z â ¹ ¼ 6–7. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3058-3071.	4.4	106

#	Article	IF	CITATIONS
19	Was reionization complete by $z\hat{a}^{1/4}$ 5-6?. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1328-1337.	4.4	104
20	Dark-ages reionization and galaxy formation simulation $\hat{a}\in$ III. Modelling galaxy formation and the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2016, 462, 250-276.	4.4	99
21	Simultaneously constraining the astrophysics of reionization and the epoch of heating with 21CMMC. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2651-2669.	4.4	98
22	Constraints on reionization from the $\langle i \rangle z \langle i \rangle = 7.5$ QSO ULASJ1342+0928. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5094-5101.	4.4	97
23	The first (nearly) model-independent constraint on the neutral hydrogen fraction at. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3237-3246.	4.4	90
24	Emulating Simulations of Cosmic Dawn for 21 cm Power Spectrum Constraints on Cosmology, Reionization, and X-Ray Heating. Astrophysical Journal, 2017, 848, 23.	4.5	89
25	The kinetic Sunyaev-Zel'dovich signal from inhomogeneous reionization: a parameter space study. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1403-1417.	4.4	87
26	The imprint of warm dark matter on the cosmological 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2664-2671.	4.4	84
27	The Evolution Of 21Âcm Structure (EOS): public, large-scale simulations of Cosmic Dawn and reionization. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2342-2353.	4.4	84
28	The global history of reionization. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4838-4852.	4.4	82
29	First Results from HERA Phase I: Upper Limits on the Epoch of Reionization 21 cm Power Spectrum. Astrophysical Journal, 2022, 925, 221.	4.5	82
30	Hydrogen reionization ends by $\langle i\rangle z\langle i\rangle = 5.3$: Lyman-Î \pm optical depth measured by the XQR-30 sample. Monthly Notices of the Royal Astronomical Society, 2022, 514, 55-76.	4.4	82
31	LyÎ \pm emitters during the early stages of reionization. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1990-2002.	4.4	81
32	How does radiative feedback from an ultraviolet background impact reionization?. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3340-3348.	4.4	79
33	PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE <i>z</i> = 8.4 INTERGALACTIC MEDIUM. Astrophysical Journal, 2015, 809, 62.	4.5	79
34	Are we witnessing the epoch of reionisation at $\langle i \rangle z \langle i \rangle = 7.1$ from the spectrum of J1120+0641?. Monthly Notices of the Royal Astronomical Society, 0, , stw3351.	4.4	79
35	LyÎ \pm emission-line reconstruction for high- <i>z</i> QSOs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1814-1838.	4.4	77
36	Ultraviolet radiative feedback during the advanced stages of reionization. Monthly Notices of the Royal Astronomical Society, 2008, 390, 1071-1080.	4.4	73

#	Article	IF	Citations
37	Reionization and beyond: detecting the peaks of the cosmological 21 cm signal. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3262-3274.	4.4	72
38	Beacons into the Cosmic Dark Ages: Boosted Transmission of Lyl±Âfrom UV Bright Galaxies at zÂ≳Â7. Astrophysical Journal Letters, 2018, 857, L11.	8.3	68
39	Evolution in the escape fraction of ionizing photons and the decline in strong Lyl $^\pm$ emission from z > 6 galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3309-3316.	4.4	67
40	The clustering of Lyman \hat{l}_{\pm} emitters at <i>z</i> a\cdot^7: implications for reionization and host halo masses. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1843-1854.	4.4	67
41	High-mass X-ray binaries and the cosmic 21-cm signal: impact of host galaxy absorption. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1166-1174.	4.4	66
42	LyÎ \pm damping wing constraints on inhomogeneous reionization. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1348-1358.	4.4	64
43	The depletion of gas in high-redshift dwarf galaxies from an inhomogeneous reionization. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 432, L51-L55.	3.3	63
44	21CMMC with a 3D light-cone: the impact of the co-evolution approximation on the astrophysics of reionization and cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3217-3229.	4.4	63
45	HERA Phase I Limits on the Cosmic 21 cm Signal: Constraints on Astrophysics and Cosmology during the Epoch of Reionization. Astrophysical Journal, 2022, 924, 51.	4.5	63
46	Reionization and galaxy inference from the high-redshift Ly α forest. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2390-2407.	4.4	61
47	Dark-ages reionization and galaxy formation simulation – IV. UV luminosity functions of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 462, 235-249.	4.4	60
48	Ultraviolet Radiative Feedback on Highâ€Redshift Protogalaxies. Astrophysical Journal, 2006, 648, 835-851.	4.5	59
49	Constraints on Reionization and Source Properties from the Absorption Spectra of 2> 6.2 Quasars. Astrophysical Journal, 2007, 660, 923-932.	4.5	58
50	Focusing on warm dark matter with lensed high-redshift galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 435, L53-L57.	3.3	58
51	Dark-ages reionization and galaxy formation simulation $\hat{a}\in X$. The small contribution of quasars to reionization. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2009-2027.	4.4	58
52	21cmFAST v3: A Python-integrated C code for generating 3D realizations of the cosmic 21cm signal Journal of Open Source Software, 2020, 5, 2582.	4.6	58
53	Deep learning from 21-cm tomography of the Cosmic Dawn and Reionization. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	53
54	EARLY GALAXY FORMATION IN WARM DARK MATTER COSMOLOGIES. Astrophysical Journal, 2015, 806, 67.	4.5	52

#	Article	lF	Citations
55	The impact of the first galaxies on cosmic dawn and reionization. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3657-3681.	4.4	47
56	Interpreting LOFAR 21-cm signal upper limits at $\langle i \rangle z \langle i \rangle$ ≠9.1 in the context of high- $\langle i \rangle z \langle i \rangle$ galaxy and reionization observations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1-13.	4.4	46
57	Probing the Reionization History Using the Spectra of Highâ€Redshift Sources. Astrophysical Journal, 2004, 613, 23-35.	4.5	45
58	Dark-ages Reionization and Galaxy formation simulation – I. The dynamical lives of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3025-3039.	4.4	45
59	Results from EDGES High-band. II. Constraints on Parameters of Early Galaxies. Astrophysical Journal, 2018, 863, 11.	4.5	44
60	The ionizing background at the end of reionization. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1667-1673.	4.4	43
61	Constraints on the Smallâ€6cale Power Spectrum of Density Fluctuations from Highâ€Redshift Gammaâ€Ray Bursts. Astrophysical Journal, 2005, 623, 1-10.	4.5	42
62	The impact of scatter in the galaxy UV luminosity to halo mass relation on Ly α visibility during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3602-3613.	4.4	42
63	A tale of two sites – I. Inferring the properties of minihalo-hosted galaxies from current observations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 123-140.	4.4	42
64	The inhomogeneous ionizing background following reionization. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1461-1471.	4.4	41
65	Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2710-2724.	4.4	41
66	Mitigating Internal Instrument Coupling for 21 cm Cosmology. II. A Method Demonstration with the Hydrogen Epoch of Reionization Array. Astrophysical Journal, 2020, 888, 70.	4.5	41
67	Gas in simulations of high-redshift galaxies and minihaloes. Monthly Notices of the Royal Astronomical Society, 2009, 399, 369-376.	4.4	35
68	Absolute Calibration Strategies for the Hydrogen Epoch of Reionization Array and Their Impact on the 21 cm Power Spectrum. Astrophysical Journal, 2020, 890, 122.	4.5	35
69	Redundant-baseline calibration of the hydrogen epoch of reionization array. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5840-5861.	4.4	33
70	Hydrodynamic Response of the Intergalactic Medium to Reionization. Astrophysical Journal, 2020, 898, 149.	4. 5	33
71	Cross-correlation of the cosmic 21-cm signal and Lyman \hat{l}_{\pm} emitters during reionization. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2741-2750.	4.4	31
72	The Redshift Distribution of Distant Supernovae and Its Use in Probing Reionization. Astrophysical Journal, 2006, 637, 80-90.	4. 5	30

#	Article	IF	CITATIONS
73	IGM damping wing constraints on reionization from covariance reconstruction of two $\langle i \rangle z \langle i \rangle$ ≳ 7 QSOs. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5390-5403.	4.4	30
74	Constraints on the temperature of the intergalactic medium at $>z>= 8.4$ with 21-cm observations. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4295-4300.	4.4	29
75	Optimizing sparse RFI prediction using deep learning. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2605-2615.	4.4	29
76	Understanding the HERA Phase I receiver system with simulations and its impact on the detectability of the EoR delay power spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1232-1242.	4.4	29
77	HI tomographic imaging of the Cosmic Dawn and Epoch of Reionization with SKA. , 2015, , .		28
78	Reionization inference from the CMB optical depth and E-mode polarization power spectra. Monthly Notices of the Royal Astronomical Society, 2020, 499, 550-558.	4.4	27
79	Dark-ages reionization and galaxy formation simulation – II. Spin and concentration parameters for dark matter haloes during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2106-2117.	4.4	26
80	A tale of two sites – II. Inferring the properties of minihalo-hosted galaxies with upcoming 21-cm interferometers. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4748-4758.	4.4	26
81	Minimum size of 21-cm simulations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2354-2362.	4.4	25
82	Properties of reionization-era galaxies from JWST luminosity functions and 21-cm interferometry. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3891-3899.	4.4	24
83	Relic Hâ€fii regions and radiative feedback at high redshifts. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1650-1662.	4.4	23
84	Dark-ages reionization and galaxy formation simulation V: morphology and statistical signatures of reionization. Monthly Notices of the Royal Astronomical Society, 2016, 462, 804-817.	4.4	23
85	Machine learning astrophysics from 21Âcm lightcones: impact of network architectures and signal contamination. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3852-3867.	4.4	22
86	The HERA-19 Commissioning Array: Direction-dependent Effects. Astrophysical Journal, 2019, 882, 58.	4.5	20
87	Constraints on warm dark matter from UV luminosity functions of high- <i>z</i> galaxies with Bayesian model comparison. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3046-3056.	4.4	20
88	Dark-ages reionization and galaxy-formation simulation – VII. The sizes of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3134-3142.	4.4	19
89	The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry. Experimental Astronomy, 2018, 45, 177-199.	3.7	19
90	Foreground modelling via Gaussian process regression: an application to HERA data. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2813-2826.	4.4	19

#	Article	IF	CITATIONS
91	Detection of cosmic structures using the bispectrum phase. II. First results from application to cosmic reionization using the Hydrogen Epoch of Reionization Array. Physical Review D, 2020, 102, .	4.7	17
92	Epoch of reionization parameter estimation with the 21-cm bispectrum. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3838-3848.	4.4	17
93	Dark-ages reionization and galaxy-formation simulation– VI. The origins and fate of the highest known redshift galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3556-3562.	4.4	15
94	The spinâ€"temperature dependence of the 21-cmâ€"LAE cross-correlation. Monthly Notices of the Royal Astronomical Society, 2020, 496, 581-589. Candidate documentclass{aastex} usepackage{amsbsy}	4.4	14
95	usepackage{amsfonts} usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} ewcommandcyr{ enewcommandmdefault{wncyr} enewcommandsfdefault{wncyss}	4.5	13
96	enewcommandencoding default (OT2) ormalfont selectiont? Dark-ages reionization and galaxy formation simulation – XIII. AGN quenching of high-redshift star formation in ZF-COSMOS-20115. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4345-4354.	4.4	13
97	Reionisation & Dawn Astrophysics from the Square Kilometre Array: Impact of Observing Strategies. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	13
98	Elevated Hot Gas and High-mass X-Ray Binary Emission in Low-metallicity Galaxies: Implications for Nebular Ionization and Intergalactic Medium Heating in the Early Universe. Astrophysical Journal, 2022, 930, 135.	4.5	13
99	Combining high-z galaxy luminosity functions with Bayesian evidence. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	12
100	Measuring the Density Fields around Bright Quasars at z \hat{a}^4 6 with XQR-30 Spectra. Astrophysical Journal, 2022, 931, 29.	4.5	12
101	Validation of the HERA Phase I Epoch of Reionization 21 cm Power Spectrum Software Pipeline. Astrophysical Journal, 2022, 924, 85.	4.5	11
102	Dark-ages reionization and galaxy formation simulation – XII. Bubbles at dawn. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1324-1335.	4.4	10
103	Dark-ages reionization and galaxy formation simulation–XI. Clustering and halo masses of high redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1995-2008.	4.4	10
104	Peering into the dark (ages) with low-frequency space interferometers. Experimental Astronomy, 2021, 51, 1641-1676.	3.7	10
105	Semi-numeric simulations of helium reionization and the fluctuating radiation background. Monthly Notices of the Royal Astronomical Society, 2014, 440, 987-1001.	4.4	9
106	Methods of Error Estimation for Delay Power Spectra in 21 cm Cosmology. Astrophysical Journal, Supplement Series, 2021, 255, 26.	7.7	9
107	Upper limits on the 21 \hat{A} cm power spectrum at $\langle i \rangle z \langle i \rangle \hat{A} = \hat{A}5.9$ from quasar absorption line spectroscopy. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 463, L56-L60.	3.3	8
108	Bubble mapping with the Square Kilometre Array – I. Detecting galaxies with Euclid, JWST, WFIRST, and ELT within ionized bubbles in the intergalactic medium at z & amp;gt; 6. Monthly Notices of the Royal Astronomical Society, 2020, 493, 855-870.	4.4	8

#	Article	IF	Citations
109	Measuring HERA's Primary Beam in Situ: Methodology and First Results. Astrophysical Journal, 2020, 897, 5.	4.5	8
110	The 21-cm signal from the cosmic dawn: metallicity dependence of high-mass X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5097-5108.	4.4	7
111	Simultaneously constraining the astrophysics of reionisation and the epoch of heating with 21CMMC. Proceedings of the International Astronomical Union, 2017, 12, 18-21.	0.0	5
112	A galaxy-free phenomenological model for the 21-cm power spectrum during reionization. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2010-2030.	4.4	5
113	Dark-agesÂReionizationÂ&ÂGalaxyÂFormationÂSimulationÂVIII. Suppressed growth of dark matter halos during the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 0, , stx083.	4.4	4
114	Dark-ages reionization and galaxy formation simulation $\hat{a} \in \mathbb{C}$ IX. Economics of reionizing galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3300-3315.	4.4	4
115	Dark-ages Reionization and Galaxy Formation Simulation – XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1318-1335.	4.4	4
116	Dark-ages reionizationÂand galaxy formation simulation – XVI. The thermal memory of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 489, 977-992.	4.4	4
117	Reionization and Cosmic Dawn: theory and simulations. Proceedings of the International Astronomical Union, 2017, 12, 3-11.	0.0	3
118	Dark-ages Reionization and Galaxy Formation Simulation – XV. Stellar evolution and feedback in dwarf galaxies at high redshift. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1946-1963.	4.4	3
119	Effects of model incompleteness on the drift-scan calibration of radio telescopes. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4578-4592.	4.4	2
120	Automated Detection of Antenna Malfunctions in Largeâ€∢i>N Interferometers: A Case Study With the Hydrogen Epoch of Reionization Array. Radio Science, 2022, 57, .	1.6	2
121	UV radiative feedback on high-redshift proto-galaxies. Proceedings of the International Astronomical Union, 2006, 2, 269-269.	0.0	0
122	Probing reionization with the cosmological proximity effect and high-redshift supernovae rates. New Astronomy Reviews, 2006, 50, 146-151.	12.8	0
123	Feedback Effects on Population III Star Formation. , 2008, , .		0
124	Detecting the peak of the cosmological 21 cm signal. , 2014, , .		0
125	Characterizing Beam Errors for Radio Interferometric Observations of Reionization. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0