Xiaodong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8795765/publications.pdf Version: 2024-02-01

XIAODONC

#	Article	IF	CITATIONS
1	Estimating the Least Principal Stress in a Granitic Rock Mass: Systematic Mini-Frac Tests and Elaborated Pressure Transient Analysis. Rock Mechanics and Rock Engineering, 2022, 55, 1931-1954.	5.4	13
2	Modeling flow and heat transfer of fractured reservoir: Implications for a multi-fracture enhanced geothermal system. Journal of Cleaner Production, 2022, 365, 132708.	9.3	9
3	Global Frictional Equilibrium via Stochastic, Local Coulomb Frictional Slips. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021404.	3.4	7
4	Impoundmentâ€Associated Hydroâ€Mechanical Changes and Regional Seismicity Near the Xiluodu Reservoir, Southwestern China. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021590.	3.4	11
5	How Does In Situ Stress Rotate Within a Fault Zone? Insights From Explicit Modeling of the Frictional, Fractured Rock Mass. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022348.	3.4	11
6	Hydraulic stimulation and fluid circulation experiments in underground laboratories: Stepping up the scale towards engineered geothermal systems. Geomechanics for Energy and the Environment, 2020, 24, 100175.	2.5	55
7	Coulomb criterion - bounding crustal stress limit and intact rock failure: Perspectives. Powder Technology, 2020, 374, 106-110.	4.2	8
8	Local stress perturbations associated with the 2008 Wenchuan M 8.0 earthquake near the Longmenshan fault zone in the eastern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 2020, 200, 104429.	2.3	9
9	Predicting Lithology-Controlled Stress Variations in the Woodford Shale from Well Log Data via Viscoplastic Relaxation. SPE Journal, 2020, 25, 2534-2546.	3.1	13
10	Corrigendum to "Hydraulic stimulation and fluid circulation experiments in underground laboratories: Stepping up the scale towards engineered geothermal systems―by Gischig et al. https://doi.org/10.1016/j.gete.2019.100175. Geomechanics for Energy and the Environment, 2020, 24, 100190.	2.5	2
11	ISRM Suggested Method: Determining Deformation and Failure Characteristics of Rocks Subjected to True Triaxial Compression. Rock Mechanics and Rock Engineering, 2019, 52, 2011-2020.	5.4	107
12	Volumetric Deformation, Ultrasonic Velocities and Effective Stress Coefficients of St Peter Sandstone During Poroelastic Stress Changes. Rock Mechanics and Rock Engineering, 2019, 52, 2901-2916.	5.4	11
13	Static and Dynamic Response of Bakken Cores to Cyclic Hydrostatic Loading. Rock Mechanics and Rock Engineering, 2018, 51, 1943-1953.	5.4	9
14	On the Applicability of Nadai and Mogi Failure Criteria to Porous Sandstones. Rock Mechanics and Rock Engineering, 2018, 51, 3835-3843.	5.4	3
15	Lithology Variations and Cross-Cutting Faults Affect Hydraulic Fracturing of Woodford Shale: A Case Study. , 2017, , .		4
16	Laboratory experiments simulating poroelastic stress changes associated with depletion and injection in lowâ€porosity sedimentary rocks. Journal of Geophysical Research: Solid Earth, 2017, 122, 2478-2503.	3.4	51
17	Failure characteristics of two porous sandstones subjected to true triaxial stresses: Applied through a novel loading path. Journal of Geophysical Research: Solid Earth, 2017, 122, 2525-2540.	3.4	62
18	The application of a Matsuoka-Nakai-Lade-Duncan failure criterion to two porous sandstones. International Journal of Rock Mechanics and Minings Sciences, 2017, 92, 9-18.	5.8	51

Xiaodong

#	Article	IF	CITATIONS
19	Lithology-controlled stress variations and pad-scale faults: A case study of hydraulic fracturing in the Woodford Shale, Oklahoma. Geophysics, 2017, 82, ID35-ID44.	2.6	46
20	Lithology-Controlled Stress Variations: A Case Study of the Woodford Shale, Oklahoma. , 2017, , .		0
21	True triaxial failure stress and failure plane of two porous sandstones subjected to two distinct loading paths. , 2017, , 285-307.		5
22	DEM simulations of sandstone under true triaxial compressive tests. Acta Geotechnica, 2017, 12, 495-510.	5.7	66
23	Failure characteristics of two porous sandstones subjected to true triaxial stresses. Journal of Geophysical Research: Solid Earth, 2016, 121, 6477-6498.	3.4	145
24	A note on the strength symmetry imposed by Mogi's true-triaxial criterion. International Journal of Rock Mechanics and Minings Sciences, 2013, 64, 17-21.	5.8	20