
Howard C Hang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8795708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemoproteomic Analysis of Microbiota Metabolite–Protein Targets and Mechanisms. Biochemistry, 2022, 61, 2822-2834.	2.5	7
2	Chemical proteomics for identifying short-chain fatty acid modified proteins in Salmonella. Methods in Enzymology, 2022, 664, 135-150.	1.0	0
3	Membrane targeting enhances muramyl dipeptide binding to NOD2 and Arf6–GTPase in mammalian cells. Chemical Communications, 2022, 58, 6598-6601.	4.1	4
4	Microbial mechanisms to improve immune checkpoint blockade responsiveness. Neoplasia, 2022, 31, 100818.	5.3	3
5	Protein <i>S</i> -palmitoylation in immunity. Open Biology, 2021, 11, 200411.	3.6	23
6	Site-Specific Lipidation Enhances IFITM3 Membrane Interactions and Antiviral Activity. ACS Chemical Biology, 2021, 16, 844-856.	3.4	22
7	Lytic Bacteriophages Facilitate Antibiotic Sensitization of Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	30
8	<i>Enterococcus</i> peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science, 2021, 373, 1040-1046.	12.6	158
9	RecT Recombinase Expression Enables Efficient Gene Editing in <i>Enterococcus</i> spp Applied and Environmental Microbiology, 2021, 87, e0084421.	3.1	9
10	Chemical approaches for investigating site-specific protein S-fatty acylation. Current Opinion in Chemical Biology, 2021, 65, 109-117.	6.1	7
11	Improving immunotherapy response through the use of designer bacteria. Cancer Cell, 2021, 39, 1576-1577.	16.8	2
12	Chemical Reporters for Exploring Microbiology and Microbiota Mechanisms. ChemBioChem, 2020, 21, 19-32.	2.6	16
13	Site-specific acylation of a bacterial virulence regulator attenuates infection. Nature Chemical Biology, 2020, 16, 95-103.	8.0	52
14	Targeted and proteome-wide analysis of metabolite–protein interactions. Current Opinion in Chemical Biology, 2020, 54, 19-27.	6.1	15
15	Enterococcus NlpC/p60 Peptidoglycan Hydrolase SagA Localizes to Sites of Cell Division and Requires Only a Catalytic Dyad for Protease Activity. Biochemistry, 2020, 59, 4470-4480.	2.5	4
16	Nuclear Receptor Chemical Reporter Enables Domain-Specific Analysis of Ligands in Mammalian Cells. ACS Chemical Biology, 2020, 15, 2324-2330.	3.4	5
17	Biochemical analysis of NlpC/p60 peptidoglycan hydrolase activity. Methods in Enzymology, 2020, 638, 109-127.	1.0	6
18	Translation of Microbiota Short-Chain Fatty Acid Mechanisms Affords Anti-infective Acyl-Salicylic Acid Derivatives. ACS Chemical Biology, 2020, 15, 1141-1147.	3.4	7

HOWARD C HANG

#	Article	IF	CITATIONS
19	Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/p97 ATPase. Cell Chemical Biology, 2020, 27, 571-585.e6.	5.2	27
20	Chemical Proteomic Analysis of S-Fatty Acylated Proteins and Their Modification Sites. Methods in Molecular Biology, 2019, 2009, 45-57.	0.9	0
21	CHP1 Regulates Compartmentalized Glycerolipid Synthesis by Activating GPAT4. Molecular Cell, 2019, 74, 45-58.e7.	9.7	83
22	Peptidoglycan Metabolite Photoaffinity Reporters Reveal Direct Binding to Intracellular Pattern Recognition Receptors and Arf GTPases. ACS Chemical Biology, 2019, 14, 405-414.	3.4	31
23	IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nature Chemical Biology, 2019, 15, 259-268.	8.0	169
24	Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis. ELife, 2019, 8, .	6.0	59
25	Selective Enrichment and Direct Analysis of Protein S-Palmitoylation Sites. Journal of Proteome Research, 2018, 17, 1907-1922.	3.7	52
26	Nε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function. Nature Microbiology, 2018, 3, 996-1009.	13.3	65
27	Chemical Proteomic Profiling of Protein Fatty-Acylation in Microbial Pathogens. Current Topics in Microbiology and Immunology, 2018, 420, 93-110.	1.1	3
28	Chemical proteomics reveals ADP-ribosylation of small GTPases during oxidative stress. Nature Chemical Biology, 2017, 13, 302-308.	8.0	32
29	Protein S-palmitoylation in cellular differentiation. Biochemical Society Transactions, 2017, 45, 275-285.	3.4	42
30	Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells. Bioorganic and Medicinal Chemistry, 2017, 25, 2883-2887.	3.0	19
31	The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. Journal of Biological Chemistry, 2017, 292, 21517-21526.	3.4	74
32	Massâ€Tag Labeling Using Acylâ€PEG Exchange for the Determination of Endogenous Protein Sâ€Fatty Acylation. Current Protocols in Protein Science, 2017, 89, 14.17.1-14.17.11.	2.8	32
33	Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4302-4307.	7.1	145
34	A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science, 2016, 353, 1434-1437.	12.6	116
35	Bioorthogonal Chemical Reporters for Monitoring Unsaturated Fattyâ€Acylated Proteins. ChemBioChem, 2016, 17, 1800-1803.	2.6	32
36	Exploiting a host-commensal interaction to promote intestinal barrier function and enteric pathogen tolerance. Science Immunology, 2016, 1, .	11.9	64

HOWARD C HANG

#	Article	IF	CITATIONS
37	Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells. Journal of the American Chemical Society, 2016, 138, 14423-14433.	13.7	95
38	Proteomic analysis of fatty-acylated proteins. Current Opinion in Chemical Biology, 2016, 30, 77-86.	6.1	73
39	Antibacterial Flavonoids from Medicinal Plants Covalently Inactivate Type III Protein Secretion Substrates. Journal of the American Chemical Society, 2016, 138, 2209-2218.	13.7	87
40	Chemical reporters for exploring protein acylation. Biochemical Society Transactions, 2015, 43, 253-261.	3.4	50
41	Host–Pathogen Interaction Profiling Using Self-Assembling Human Protein Arrays. Journal of Proteome Research, 2015, 14, 1920-1936.	3.7	40
42	A Single Protein S-acyl Transferase Acts through Diverse Substrates to Determine Cryptococcal Morphology, Stress Tolerance, and Pathogenic Outcome. PLoS Pathogens, 2015, 11, e1004908.	4.7	56
43	A novel role of farnesylation in targeting a mitotic checkpoint protein, human Spindly, to kinetochores. Journal of Cell Biology, 2015, 208, 881-896.	5.2	58
44	Myristoylome Profiling Reveals a Concerted Mechanism of ARF GTPase Deacylation by the Bacterial Protease IpaJ. Molecular Cell, 2015, 58, 110-122.	9.7	72
45	Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based Detection of Global Pathogen-host AMPylation on Self-assembled Human Protein Microarrays. Molecular and Cellular Proteomics, 2014, 13, 3164-3176.	3.8	42
46	Chemoproteomics reveals Toll-like receptor fatty acylation. BMC Biology, 2014, 12, 91.	3.8	66
47	Turning the spotlight on protein–lipid interactions in cells. Current Opinion in Chemical Biology, 2014, 21, 144-153.	6.1	43
48	SORTing out cellular proteomes in vivo. Nature Biotechnology, 2014, 32, 445-446.	17.5	1
49	Bioorthogonal Chemical Reporters for Analyzing Protein Lipidation and Lipid Trafficking. Accounts of Chemical Research, 2011, 44, 699-708.	15.6	137
50	Exploring Protein Lipidation with Chemical Biology. Chemical Reviews, 2011, 111, 6341-6358.	47.7	107