Jianming Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8795704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-pulsations in a microcavity Brillouin laser. Optics Letters, 2022, 47, 421.	3.3	4
2	High-power, low-noise Brillouin laser on a silicon chip. Optics Letters, 2022, 47, 1638.	3.3	7
3	Hybrid Entanglement between Optical Discrete Polarizations and Continuous Quadrature Variables. Photonics, 2021, 8, 552.	2.0	4
4	Antiparity-Time Symmetry in Passive Nanophotonics. ACS Photonics, 2020, 7, 3035-3041.	6.6	34
5	Chipâ€Based Optical Isolator and Nonreciprocal Parityâ€Time Symmetry Induced by Stimulated Brillouin Scattering. Laser and Photonics Reviews, 2020, 14, 1900278.	8.7	31
6	Sub-Hertz resonance by weak measurement. Nature Communications, 2020, 11, 1752.	12.8	14
7	Controllable coupling between an ultra-high-Q microtoroid cavity and a graphene monolayer for optical filtering and switching applications. Optics Express, 2020, 28, 7906.	3.4	12
8	Anti-Parity-Time Symmetric Optical Four-Wave Mixing in Cold Atoms. Physical Review Letters, 2019, 123, 193604.	7.8	65
9	Non-Hermitian Nonlinear Optics without Gain and Loss. , 2019, , .		0
10	Sub-Hertz Resonance by Weak Measurement. , 2019, , .		0
11	Parity-time symmetry in optical microcavity systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 222001.	1.5	45
12	Overcoming erasure errors with multilevel systems. New Journal of Physics, 2017, 19, 013026.	2.9	40
13	Demonstration of a chip-based optical isolator with parametric amplification. Nature Communications, 2016, 7, 13657.	12.8	89
14	Anti-parity–time symmetry with flying atoms. Nature Physics, 2016, 12, 1139-1145.	16.7	298
15	Modeling of On-Chip Optical Nonreciprocity with an Active Microcavity. Photonics, 2015, 2, 498-508.	2.0	11
16	Diffraction Interference Induced Superfocusing in Nonlinear Talbot Effect. Scientific Reports, 2015, 4, 6134.	3.3	18
17	Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nature Photonics, 2014, 8, 524-529.	31.4	910
18	PT-Symmetry and on-Chip Optical Nonreciprocity in Active-Passive-Coupled Microtoroids. , 2014, , .		1

2

JIANMING WEN

#	Article	IF	CITATIONS
19	Photon-number-resolved detection of photon-subtracted thermal light. Optics Letters, 2013, 38, 2171.	3.3	30
20	The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Advances in Optics and Photonics, 2013, 5, 83.	25.5	310
21	Forming positive-negative images using conditioned partial measurements from reference arm in ghost imaging. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1906.	1.5	17
22	Fractional second-harmonic Talbot effect. Optics Letters, 2012, 37, 689.	3.3	19
23	Optimal storage and retrieval of single-photon waveforms. Optics Express, 2012, 20, 24124.	3.4	60
24	Acousto-optic tunable second-harmonic Talbot effect based on periodically poled LiNbO_3 crystals. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 3325.	2.1	7
25	Coherence-Assisted Resonance with Sub-Transit-Limited Linewidth. Physical Review Letters, 2012, 109, 233006.	7.8	10
26	Fractional Second-harmonic Talbot Effect. , 2012, , .		0
27	Theory of nonlinear Talbot effect. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 275.	2.1	22
28	Electromagnetically induced Talbot effect. Applied Physics Letters, 2011, 98, .	3.3	79
29	Improving spatial resolution in quantum imaging beyond the Rayleigh diffraction limit using multiphoton W entangled states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3908-3911.	2.1	9
30	Tripartite entanglement generation via four-wave mixings: narrowband triphoton W state. Journal of the Optical Society of America B: Optical Physics, 2010, 27, A11.	2.1	20
31	Generation of frequency-correlated narrowband biphotons from four-wave mixing in cold atoms. Physical Review A, 2010, 82, .	2.5	12
32	Nonlinear Talbot Effect. Physical Review Letters, 2010, 104, 183901.	7.8	158
33	Engineering biphoton wave packets with an electromagnetically induced grating. Physical Review A, 2010, 82, .	2.5	34
34	Temporally shaping biphoton wave packets with periodically modulated driving fields. Physical Review A, 2009, 79, .	2.5	19
35	Distinction of tripartite Greenberger-Horne-Zeilinger andWstates entangled in time (or energy) and space. Physical Review A, 2009, 79, .	2.5	17
36	Second-order Talbot effect with entangled photon pairs. Physical Review A, 2009, 80, .	2.5	45

JIANMING WEN

#	Article	IF	CITATIONS
37	Shaping Paired Photons with Four-Wave Mixing and Slow Light. , 2009, , .		Ο
38	Narrowband Triphoton W State Generation via Four-Wave Mixings. , 2009, , .		0
39	Nonclassical light generation via a four-level inverted-Y system. Physical Review A, 2008, 77, .	2.5	42
40	Narrowband biphoton generation near atomic resonance. Journal of the Optical Society of America B: Optical Physics, 2008, 25, C98.	2.1	132
41	Two-photon beating experiment using biphotons generated from a two-level system. Physical Review A, 2008, 78, .	2.5	7
42	Biphoton in a two-level cooled atomic ensemble. , 2007, , .		0
43	Biphoton generation in a two-level atomic ensemble. Physical Review A, 2007, 75, .	2.5	42
44	Four-Wave Mixing and Biphoton Generation in a Two-Level System. Physical Review Letters, 2007, 98, 053601.	7.8	110
45	Four-wave mixing in three-level systems: Interference and entanglement. Physical Review A, 2007, 76, .	2.5	45
46	Spontaneous parametric down-conversion in a three-level system. Physical Review A, 2007, 76, .	2.5	25
47	Transverse correlations in triphoton entanglement: Geometrical and physical optics. Physical Review A, 2007, 76, .	2.5	16
48	Transverse correlations in multiphoton entanglement. Physical Review A, 2007, 76, .	2.5	7
49	Four-Wave Mixing and Two-Photon Interference in a Three-Level Atomic Ensemble. , 2007, , .		0
50	A New Beating Experiment Using Biphotons Generated from a Two-Level System. , 2007, , .		0
51	Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. II. Beyond perturbation theory. Physical Review A, 2006, 74, .	2.5	26
52	Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. I. Perturbation theory. Physical Review A, 2006, 74, .	2.5	30
53	Effects of mismatched transmissions on two-mode squeezing and EPR correlations with a slow light medium. Physical Review A, 2005, 72, .	2.5	6
54	Theory of two-photon interference in an electromagnetically induced transparency system. Physical Review A, 2004, 70, .	2.5	8