## Nataly C Rosero-Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/879569/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Two-step liquid-phase synthesis of argyrodite Li6PS5Cl solid electrolyte using nonionic surfactant.<br>Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2023, 62, 187-193.                                            | 1.9  | 3         |
| 2  | Argyrodite solid electrolyte-coated graphite as anode material for all-solid-state batteries. Journal of<br>Sol-Gel Science and Technology, 2022, 101, 8-15.                                                               | 2.4  | 4         |
| 3  | Liquid-phase Synthesis of Sulfide Electrolytes and Synthesis Mechanism. Funtai Oyobi Fummatsu<br>Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, 95-98.                                      | 0.2  | 0         |
| 4  | Preparation of transparent and mechanically hard inorganic-organic hybrid thick films from<br>3-glycidoxypropyltrimethoxysilane and zirconium propoxide. Journal of Sol-Gel Science and<br>Technology, 2022, 104, 478-483. | 2.4  | 4         |
| 5  | Impact of Sulfur Infiltration Time and Its Content in an N-doped Mesoporous Carbon for Application in Li-S Batteries. Batteries, 2022, 8, 58.                                                                              | 4.5  | 9         |
| 6  | Application of sol-gel processes to materials and interfaces in oxide-based all-solid-state batteries.<br>Journal of Sol-Gel Science and Technology, 2022, 103, 680-689.                                                   | 2.4  | 0         |
| 7  | Synthesis of sulfide solid electrolytes from Li <sub>2</sub> S and P <sub>2</sub> S <sub>5</sub> in anisole. Journal of Materials Chemistry A, 2021, 9, 400-405.                                                           | 10.3 | 22        |
| 8  | Wet Chemical Processes for the Preparation of Composite Electrodes in All-Solid-State Lithium Battery. , 2021, , 85-92.                                                                                                    |      | 1         |
| 9  | Kinetic Control of the Li <sub>0.9</sub> Mn <sub>1.6</sub> Ni <sub>0.4</sub> O <sub>4</sub> Spinel<br>Structure with Enhanced Electrochemical Performance. ACS Applied Materials & Interfaces, 2021,<br>13, 14056-14067.   | 8.0  | 4         |
| 10 | Chemical stability of Li4PS4I solid electrolyte against hydrolysis. Applied Materials Today, 2021, 22, 100918.                                                                                                             | 4.3  | 32        |
| 11 | Fast discharge–charge properties of FePS3 electrode for all-solid-state batteries using sulfide electrolytes and its stable diffusion path. Functional Materials Letters, 2021, 14, 2141005.                               | 1.2  | 2         |
| 12 | Formation Mechanism of β-Li <sub>3</sub> PS <sub>4</sub> through Decomposition of Complexes.<br>Inorganic Chemistry, 2021, 60, 6964-6970.                                                                                  | 4.0  | 19        |
| 13 | Observing and Modeling the Sequential Pairwise Reactions that Drive Solid‣tate Ceramic Synthesis.<br>Advanced Materials, 2021, 33, e2100312.                                                                               | 21.0 | 51        |
| 14 | Phase transition, magnetic, and electronic properties of CeOInS <sub>2</sub> . Journal of the Ceramic<br>Society of Japan, 2021, 129, 249-253.                                                                             | 1.1  | 1         |
| 15 | Kinetically Stabilized Cation Arrangement in Li <sub>3</sub> YCl <sub>6</sub> Superionic Conductor<br>during Solidâ€State Reaction. Advanced Science, 2021, 8, e2101413.                                                   | 11.2 | 24        |
| 16 | Combustion Reactions between Transition-Metal Chlorides and Sodium Amide and Their Ignition Temperature. Inorganic Chemistry, 2021, 60, 12753-12758.                                                                       | 4.0  | 4         |
| 17 | Synthesis of highly Li-ion conductive garnet-type solid ceramic electrolytes by<br>solution-process-derived sintering additives. Journal of the European Ceramic Society, 2021, 41,<br>6767-6771.                          | 5.7  | 10        |
| 18 | Graphite/Li7P3S11 composite prepared by "seed―process for all-solid-state batteries. Solid State Ionics, 2021, 372, 115789.                                                                                                | 2.7  | 4         |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Preparation of Composite Electrodes for All-Solid-State Batteries Based on Sulfide Electrolytes: An<br>Electrochemical Point of View. Batteries, 2021, 7, 77.                                                             | 4.5  | 8         |
| 20 | Li2s-P2S5 Solutions for Forming Solid Electrolyte Coating Layers on Electrode Materials for All-Solid-State Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 136-136.                                                   | 0.0  | 0         |
| 21 | Electrical properties of pyrochlore-type silver tantalate and fluorite-type silver niobate. Journal of<br>the Ceramic Society of Japan, 2020, 128, 46-50.                                                                 | 1.1  | 3         |
| 22 | Fe–P–S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. Journal of Power Sources, 2020, 449, 227576.                                                                    | 7.8  | 11        |
| 23 | Organic–Inorganic Hybrid Materials for Interface Design in All-Solid-State Batteries with a<br>Garnet-Type Solid Electrolyte. ACS Applied Energy Materials, 2020, 3, 11260-11268.                                         | 5.1  | 18        |
| 24 | Formation Mechanism of Thiophosphate Anions in the Liquid-Phase Synthesis of Sulfide Solid<br>Electrolytes Using Polar Aprotic Solvents. Chemistry of Materials, 2020, 32, 9627-9632.                                     | 6.7  | 20        |
| 25 | Significant Reduction in the Interfacial Resistance of Garnet-Type Solid Electrolyte and Lithium Metal<br>by a Thick Amorphous Lithium Silicate Layer. ACS Applied Energy Materials, 2020, 3, 5533-5541.                  | 5.1  | 25        |
| 26 | Selective metathesis synthesis of MgCr <sub>2</sub> S <sub>4</sub> by control of thermodynamic driving forces. Materials Horizons, 2020, 7, 1310-1316.                                                                    | 12.2 | 27        |
| 27 | Synthesis and ionic conductivity of a high-entropy layered hydroxide. Journal of the Ceramic Society of Japan, 2020, 128, 336-339.                                                                                        | 1.1  | 13        |
| 28 | Microwave Fusion of the Composite LiMn1.6Ni0.4O4-LiFePO4 /C to Improve the Stability of Spinel Phase.<br>ECS Meeting Abstracts, 2020, MA2020-01, 398-398.                                                                 | 0.0  | 0         |
| 29 | Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery. Journal of Sol-Gel Science and Technology, 2019, 89, 303-309. | 2.4  | 46        |
| 30 | Two-Dimensional Hybrid Halide Perovskite as Electrode Materials for All-Solid-State Lithium<br>Secondary Batteries Based on Sulfide Solid Electrolytes. ACS Applied Energy Materials, 2019, 2,<br>6569-6576.              | 5.1  | 17        |
| 31 | Catalytic Activity for Oxygen Reduction Reaction of Ni-Mn-Fe Layered Double Hydroxide-Carbon Gel<br>Composite. Chemistry Letters, 2019, 48, 696-699.                                                                      | 1.3  | 4         |
| 32 | Mg-Al layered double hydroxide as an electrolyte membrane for aqueous ammonia fuel cell. Materials<br>Research Bulletin, 2019, 119, 110561.                                                                               | 5.2  | 11        |
| 33 | An electronic structure governed by the displacement of the indium site in In–S <sub>6</sub><br>octahedra: LnOInS <sub>2</sub> (Ln = La, Ce, and Pr). Dalton Transactions, 2019, 48, 12272-12278.                         | 3.3  | 8         |
| 34 | Porous ZnV <sub>2</sub> O <sub>4</sub> Nanowire for Stable and High-Rate Lithium-Ion Battery<br>Anodes. ACS Applied Nano Materials, 2019, 2, 4247-4256.                                                                   | 5.0  | 41        |
| 35 | Self-Combustion Synthesis of Novel Metastable Ternary Molybdenum Nitrides. , 2019, 1, 64-70.                                                                                                                              |      | 20        |
| 36 | Composition, valence and oxygen reduction reaction activity of Mn-based layered double hydroxides.<br>Journal of Asian Ceramic Societies, 2019, 7, 147-153.                                                               | 2.3  | 10        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nature Reviews<br>Chemistry, 2019, 3, 189-198.                                                                                                 | 30.2 | 238       |
| 38 | Enhanced hydroxide ion conductivity of Mg–Al layered double hydroxide at low humidity by intercalating dodecyl sulfate anion. Journal of the Ceramic Society of Japan, 2019, 127, 788-792.                                         | 1.1  | 7         |
| 39 | Electrochemical performance of bulk-type all-solid-state batteries using small-sized Li7P3S11 solid electrolyte prepared by liquid phase as the ionic conductor in the composite cathode. Electrochimica Acta, 2019, 296, 473-480. | 5.2  | 40        |
| 40 | Crystal Structure and Superconductivity of Tetragonal and Monoclinic<br>Ce <sub>1–<i>x</i></sub> Pr <sub><i>x</i></sub> OBiS <sub>2</sub> . Inorganic Chemistry, 2018, 57,<br>5364-5370.                                           | 4.0  | 14        |
| 41 | Preparation of sulfide solid electrolytes in the Li <sub>2</sub> S–P <sub>2</sub> S <sub>5</sub> system by a liquid phase process. Inorganic Chemistry Frontiers, 2018, 5, 501-508.                                                | 6.0  | 53        |
| 42 | Synthesis, crystal structure and optical absorption of NaInS2-Se. Journal of Alloys and Compounds, 2018, 750, 409-413.                                                                                                             | 5.5  | 8         |
| 43 | Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation. Inorganic Chemistry, 2018, 57, 4181-4188.                      | 4.0  | 51        |
| 44 | Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceramics International, 2018, 44, 742-746.                                                  | 4.8  | 75        |
| 45 | Explosive Reaction for Barium Niobium Perovskite Oxynitride. Inorganic Chemistry, 2018, 57, 24-27.                                                                                                                                 | 4.0  | 16        |
| 46 | Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification. Journal of Materials Chemistry A, 2018, 6, 21018-21028.                                                         | 10.3 | 71        |
| 47 | Reaction Mechanism of FePS <sub>3</sub> Electrodes in All-Solid-State Lithium Secondary Batteries<br>Using Sulfide-Based Solid Electrolytes. Journal of the Electrochemical Society, 2018, 165, A2948-A2954.                       | 2.9  | 10        |
| 48 | Synthesis of submicron-sized NiPS <sub>3</sub> particles and electrochemical properties as<br>active materials in all-solid-state lithium batteries. Journal of the Ceramic Society of Japan, 2018, 126,<br>568-572.               | 1.1  | 8         |
| 49 | Sol-Gel Processing of Solid Electrolytes for Li-Ion Batteries. , 2018, , 2631-2648.                                                                                                                                                |      | 2         |
| 50 | Composite cathode prepared by argyrodite precursor solution assisted by dispersant agents for bulk-type all-solid-state batteries. Journal of Power Sources, 2018, 396, 33-40.                                                     | 7.8  | 59        |
| 51 | Protonic conductivity and fuel cell tests of nanocomposite membranes based on bacterial cellulose.<br>Electrochimica Acta, 2017, 233, 52-61.                                                                                       | 5.2  | 49        |
| 52 | FePS3 electrodes in all-solid-state lithium secondary batteries using sulfide-based solid electrolytes.<br>Electrochimica Acta, 2017, 241, 370-374.                                                                                | 5.2  | 37        |
| 53 | Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics, 2017, 23, 1619-1624.                                         | 2.4  | 52        |
| 54 | Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte<br>Li <sub>7</sub> P <sub>3</sub> S <sub>11</sub> by a liquid phase process. RSC Advances, 2017, 7,<br>46499-46504.                             | 3.6  | 79        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Synthesis of LaO <sub>0.5</sub> F <sub>0.5</sub> BiS <sub>2</sub> nanosheets by ultrasonification.<br>Journal of Asian Ceramic Societies, 2017, 5, 183-185.                                                                     | 2.3  | 2         |
| 56 | Effect of Sintering Additives on Relative Density and Liâ€ion Conductivity of Nbâ€Doped<br>Li <sub>7</sub> La <sub>3</sub> ZrO <sub>12</sub> Solid Electrolyte. Journal of the American Ceramic<br>Society, 2017, 100, 276-285. | 3.8  | 76        |
| 57 | Optimization of Al2O3 and Li3BO3 Content as Sintering Additives of Li7â^'x La2.95Ca0.05ZrTaO12 at Low<br>Temperature. Journal of Electronic Materials, 2017, 46, 497-501.                                                       | 2.2  | 34        |
| 58 | Active corrosion inhibition of mild steel by environmentally-friendly Ce-doped organic–inorganic<br>sol–gel coatings. RSC Advances, 2016, 6, 39577-39586.                                                                       | 3.6  | 49        |
| 59 | Nitrogenâ€Rich Manganese Oxynitrides with Enhanced Catalytic Activity in the Oxygen Reduction<br>Reaction. Angewandte Chemie - International Edition, 2016, 55, 7963-7967.                                                      | 13.8 | 52        |
| 60 | Preparation of Li7La3(Zr2â^',Nb )O12 (x= 0–1.5) and Li3BO3/LiBO2 composites at low temperatures using a sol–gel process. Solid State Ionics, 2016, 285, 6-12.                                                                   | 2.7  | 65        |
| 61 | Protonic Conductivity of Nanocrystalline Zeolitic Imidazolate Framework 8. Electrochimica Acta, 2015, 153, 19-27.                                                                                                               | 5.2  | 44        |
| 62 | Protonic conductivity and viscoelastic behaviour of Nafion® membranes with periodic mesoporous organosilica fillers. International Journal of Hydrogen Energy, 2014, 39, 5338-5349.                                             | 7.1  | 20        |
| 63 | Meso-structured organosilicas as fillers for Nafion® membranes. Solid State Ionics, 2014, 262, 324-327.                                                                                                                         | 2.7  | 10        |
| 64 | Nanostructured Bacterial Cellulose–Poly(4-styrene sulfonic acid) Composite Membranes with High<br>Storage Modulus and Protonic Conductivity. ACS Applied Materials & Interfaces, 2014, 6, 7864-7875.                            | 8.0  | 81        |
| 65 | Study of the effect of cerium nitrate on AA2024-T3 by means of electrochemical micro-cell technique.<br>Electrochimica Acta, 2012, 70, 25-33.                                                                                   | 5.2  | 64        |
| 66 | ZrO2 sol–gel pre-treatments doped with cerium nitrate for the corrosion protection of AA6060.<br>Progress in Organic Coatings, 2012, 74, 311-319.                                                                               | 3.9  | 32        |
| 67 | Multiscale numerical modeling of Ce <sup>3+</sup> -inhibitor release from novel corrosion protection coatings. Modelling and Simulation in Materials Science and Engineering, 2011, 19, 025009.                                 | 2.0  | 7         |
| 68 | Glass-like CexOy sol–gel coatings for corrosion protection of aluminium and magnesium alloys.<br>Surface and Coatings Technology, 2011, 206, 257-264.                                                                           | 4.8  | 31        |
| 69 | Development and industrial scale-up of ZrO2 coatings and hybrid organic–inorganic coatings used as pre-treatments before painting aluminium alloys. Progress in Organic Coatings, 2011, 72, 3-14.                               | 3.9  | 41        |
| 70 | Influence of cerium concentration on the structure and properties of silica-methacrylate sol–gel<br>coatings. Journal of Sol-Gel Science and Technology, 2010, 54, 301-311.                                                     | 2.4  | 36        |
| 71 | Optimization of hybrid sol–gel coatings by combination of layers with complementary properties for corrosion protection of AA2024. Progress in Organic Coatings, 2010, 69, 167-174.                                             | 3.9  | 60        |
| 72 | Inhibition effect of cerium in hybrid sol–gel films on aluminium alloy AA2024. Surface and Interface<br>Analysis, 2010, 42, 299-305.                                                                                            | 1.8  | 48        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Electrochemical techniques for practical evaluation of corrosion inhibitor effectiveness.<br>Performance of cerium nitrate as corrosion inhibitor for AA2024T3 alloy. Corrosion Science, 2010, 52,<br>3356-3366. | 6.6 | 70        |
| 74 | Improved corrosion resistance of AA2024 alloys through hybrid organic–inorganic sol–gel coatings<br>produced from sols with controlled polymerisation. Surface and Coatings Technology, 2009, 203,<br>1897-1903. | 4.8 | 64        |
| 75 | Corrosion protection of aluminium alloy AA2024 with cerium doped methacrylate-silica coatings.<br>Journal of Sol-Gel Science and Technology, 2009, 52, 31-40.                                                    | 2.4 | 36        |
| 76 | SiO2 based hybrid inorganic–organic films doped with TiO2–CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corrosion Science, 2009, 51, 1998-2005.                                     | 6.6 | 77        |
| 77 | Multilayer silica-methacrylate hybrid coatings prepared by sol–gel on stainless steel 316L:<br>Electrochemical evaluation. Surface and Coatings Technology, 2008, 202, 2194-2201.                                | 4.8 | 59        |
| 78 | Electrochemical evaluation of multilayer silica–metacrylate hybrid sol–gel coatings containing<br>bioactive particles on surgical grade stainless steel. Surface and Coatings Technology, 2008, 203,<br>80-86.   | 4.8 | 26        |
| 79 | Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corrosion Science, 2008, 50, 1283-1291.                                                                | 6.6 | 156       |
| 80 | Ti <sub>4</sub> O <sub>7</sub> Used as Electrode in Biomedicine and for<br>Electrochemical Study of Scavenging Mechanism. Key Engineering Materials, 0, 493-494, 896-901.                                        | 0.4 | 0         |
| 81 | Preparation of Cu3N thin films by nitridation of solution process-derived thin films using urea.<br>Journal of Sol-Gel Science and Technology, 0, , 1.                                                           | 2.4 | 0         |
| 82 | Sulfide-Based Solid-State Electrolytes. ACS Symposium Series, 0, , 319-351.                                                                                                                                      | 0.5 | 0         |