Ahmed M Al-Samman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/87955/publications.pdf

Version: 2024-02-01

43 papers 513 citations

623734 14 h-index 21 g-index

43 all docs 43 docs citations

43 times ranked

484 citing authors

#	Article	IF	CITATIONS
1	Effect of Weather Condition on LoRa IoT Communication Technology in a Tropical Region: Malaysia. IEEE Access, 2021, 9, 72835-72843.	4.2	31
2	Wideband Channel Characterization for 6G Networks in Industrial Environments. Sensors, 2021, 21, 2015.	3.8	10
3	Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments. Electronics (Switzerland), 2021, 10, 1653.	3.1	28
4	Performance of the DBS Satellite Receiver under the Impact of Rainfall and Terrestrial Interference. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	1.2	3
5	Hybrid automatic repeat requestâ€based intelligent reflecting surfaceâ€assisted communication system. Electronics Letters, 2021, 57, 303-305.	1.0	2
6	Predictive Wireless Channel Modeling of MmWave Bands Using Machine Learning. Electronics (Switzerland), 2021, 10, 3114.	3.1	4
7	Performance of Full-Duplex Wireless Back-Haul Link under Rain Effects Using E-Band 73 GHz and 83 GHz in Tropical Area. Applied Sciences (Switzerland), 2020, 10, 6138.	2.5	3
8	Buffer Delay Improvement in Gait-Cycle-Driven Transmission Power Control Scheme for WBAN., 2020,,		1
9	Statistical Analysis of Rain at Millimeter Waves in Tropical Area. IEEE Access, 2020, 8, 51044-51061.	4.2	26
10	Rain Attenuation Measurements and Analysis at 73 GHz E-Band Link in Tropical Region. IEEE Communications Letters, 2020, 24, 1368-1372.	4.1	20
11	Millimeter Wave Propagation Measurements and Characteristics for 5G System. Applied Sciences (Switzerland), 2020, 10, 335.	2.5	19
12	On Platform to Enable the Cognitive Radio Over 5G Networks. Wireless Personal Communications, 2020, 113, 1241-1262.	2.7	29
13	Radio Propagation Measurements in the Indoor Stairwell Environment at 3.5 and 28 GHz for 5G Wireless Networks. International Journal of Antennas and Propagation, 2020, 2020, 1-10.	1.2	10
14	5G Channel Propagation at 28ÂGHz in Indoor Environment. Advances in Intelligent Systems and Computing, 2020, , 634-642.	0.6	0
15	Indoor Channel Estimation Using Single-Snapshot Wideband Measurement. , 2020, , .		O
16	Non-Cooperative Power Control Game in D2D Underlying Networks with Variant System Conditions. Electronics (Switzerland), 2019, 8, 1113.	3.1	6
17	Path Loss Model and Channel Capacity for UWB–MIMO Channel in Outdoor Environment. Wireless Personal Communications, 2019, 107, 271-281.	2.7	8
18	Comparative Study of Indoor Propagation Model Below and Above 6 GHz for 5G Wireless Networks. Electronics (Switzerland), 2019, 8, 44.	3.1	32

#	Article	IF	CITATIONS
19	A Survey of Millimeter Wave (mm-Wave) Communications for 5G: Channel Measurement Below and Above 6ÂGHz. Advances in Intelligent Systems and Computing, 2019, , 451-463.	0.6	10
20	Utilization of Millimeter-Wave Spectrum in Wireless Networks. Wireless Communications and Mobile Computing, 2018, 2018, 1-2.	1.2	0
21	Path Loss Model for Outdoor Parking Environments at 28 GHz and 38 GHz for 5G Wireless Networks. Symmetry, 2018, 10, 672.	2.2	15
22	Time-Varying Ultra-Wideband Channel Modeling and Prediction. Symmetry, 2018, 10, 631.	2.2	2
23	Path loss model for indoor emergency stairwell environment at millimeter wave band for 5G network. Turkish Journal of Electrical Engineering and Computer Sciences, 2018, 26, 3025-3033.	1.4	7
24	Indoor Corridor Wideband Radio Propagation Measurements and Channel Models for 5G Millimeter Wave Wireless Communications at 19 GHz, 28 GHz, and 38 GHz Bands. Wireless Communications Mobile Computing, 2018, 2018, 1-12.	anuda	34
25	Millimeter-wave propagation measurements and models at 28†GHz and 38†GHz in a dining room for 5G wireless networks. Measurement: Journal of the International Measurement Confederation, 2018, 130, 71-81.	5.0	22
26	A comprehensive review on coordinated multi-point operation for LTE-A. Computer Networks, 2017, 123, 19-37.	5.1	75
27	Experimental UWB indoor channel characterization in stationary and mobility scheme. Measurement: Journal of the International Measurement Confederation, 2017, 111, 333-339.	5.0	14
28	Experimental Characterization of Multipath Channels for Ultra-Wideband Systems in Indoor Environment Based on Time Dispersion Parameters. Wireless Personal Communications, 2017, 95, 1713-1724.	2.7	8
29	Path loss and RMS delay spread model for 5G channel at 19 GHz. , 2017, , .		6
30	UWB CHANNEL CHARACTERIZATION IN 28 GHZ MILLIMETER WAVEBAND FOR 5G CELLULAR NETWORKS. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	3
31	Investigation of the impact of different scheduling algorithm for Macro-Femto-Cells over LTE-A networks. , 2016, , .		5
32	Investigation of large-scale propagation for outdoor-parking lot environment for 5G wireless communications. , 2016, , .		4
33	Large-scale path loss models and time dispersion in an outdoor line-of-sight environment for 5G wireless communications. AEU - International Journal of Electronics and Communications, 2016, 70, 1515-1521.	2.9	27
34	Path loss model for outdoor environment at 17 GHz mm-wave band. , 2016, , .		4
35	4G channel characterization for indoor environment at 2.6 GHz. , 2015, , .		7
36	Channel characterization for indoor environment at 17 GHz for 5G communications., 2015,,.		4

#	Article	IF	CITATIONS
37	Hybrid Channel Estimation Technique with Reduced Complexity for LTE Downlink. Wireless Personal Communications, 2015, 82, 1147-1159.	2.7	3
38	Experimental Characterization and Analysis for Ultra Wideband Outdoor Channel. Wireless Personal Communications, 2015, 83, 3103-3118.	2.7	15
39	Time dispersion characteristics for wideband channel in 28 GHz millimeter wave band for 5G cellular networks. , 2015, , .		2
40	Time dispersion analysis for UWB channel in an outdoor environment. , 2014, , .		1
41	Experimental characterization of an UWB channel in outdoor environment., 2014, , .		9
42	Hybrid channel estimation for LTE downlink. , 2013, , .		0
43	Adaptive transmission technique for short range mobile underwater acoustic OFDM communication. , 2013, , .		4