Zhenhua Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8795346/publications.pdf

Version: 2024-02-01

932766 794141 26 361 10 19 citations g-index h-index papers 26 26 26 249 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel. Journal of Materials Science and Technology, 2017, 33, 1621-1628.	5.6	49
2	Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 312-315.	2.6	48
3	Study on hot deformation characteristics of 12%Cr ultra-super-critical rotor steel using processing maps and Zener–Hollomon parameter. Materials Characterization, 2010, 61, 25-30.	1.9	39
4	Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel during Hot Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1025-1032.	1.1	29
5	Effects of mischmetal addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel. Journal of Rare Earths, 2013, 31, 628-633.	2.5	27
6	Importance and role of grain size in free surface cracking prediction of heavy forgings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 321-330.	2.6	27
7	Effect of Grain Size on Dynamic Recrystallization and Hot-Ductility Behaviors in High-Nitrogen CrMn Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3631-3639.	1.1	25
8	Effect of Preheating Temperature on Surface Cracking of High Nitrogen CrMn Austenitic Stainless Steel. Journal of Materials Science and Technology, 2010, 26, 798-802.	5.6	16
9	A new insight into manufacturing fine-grained heavy retaining rings. Materials and Design, 2016, 103, 152-159.	3.3	14
10	Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1268-1279.	1.1	13
11	Cavitation erosion behavior of high‑nitrogen austenitic stainless steel: Effect and design of grain-boundary characteristics. Materials and Design, 2021, 201, 109496.	3.3	10
12	Enhancing yield strength of high nitrogen austenitic stainless steel. Journal of Constructional Steel Research, 2021, 187, 106927.	1.7	7
13	Study on transformation characteristics of carbides in an 8Â% Cr roller steel. Journal of Materials Science, 2012, 47, 7132-7137.	1.7	6
14	Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates. Materials, 2018, 11, 1026.	1.3	6
15	Effect of Silicon Content on the Hardenability and Mechanical Properties of Link-Chain Steel. Journal of Materials Engineering and Performance, 2019, 28, 1678-1684.	1.2	6
16	Effect of Hot Deformation on the Nitride Precipitation Behavior in High Nitrogen Austenitic Steel. Journal of Materials Engineering and Performance, 2010, 19, 951-954.	1.2	5
17	Formation mechanism and application potential of \hat{l} £1 boundary in grain boundary engineering of high nitrogen austenitic stainless steel. Materials Letters, 2019, 253, 377-380.	1.3	5
18	Hot Ductility Behavior of an 8ÂPct Cr Roller Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1767-1775.	1.1	4

#	Article	IF	CITATIONS
19	Fracture Behavior of High-Nitrogen Austenitic Stainless Steel Under Continuous Cooling: Physical Simulation of Free-Surface Cracking of Heavy Forgings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1470-1474.	1.1	4
20	Effects of initial grain size and strain on grain boundary engineering of high-nitrogen CrMn austenitic stainless steel. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 922-929.	2.4	4
21	Effect of Strain Rate on Hot Ductility of a Duplex Stainless Steel. Advances in Materials Science and Engineering, 2019, 2019, 1-6.	1.0	4
22	Hot-Deformation Behavior of High-Nitrogen Austenitic Stainless Steel under Continuous Cooling: Physical Simulation of Surface Microstructure Evolution of Superheavy Forgings during Hot Forging. Materials, 2019, 12, 1175.	1.3	4
23	In-situ study on cavitation erosion behavior of super ferritic stainless steel. Wear, 2021, 482-483, 203986.	1.5	4
24	Microstructure Evolution and Surface Cracking Behavior of Superheavy Forgings during Hot Forging. Advances in Materials Science and Engineering, 2018, 2018, 1-9.	1.0	3
25	Cavitation erosion mechanism and microstructural design of pure titanium. Wear, 2022, 490-491, 204189.	1.5	1
26	Hydrogen participates in cavitation erosion in water. Wear, 2022, 504-505, 204435.	1.5	1