List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8795332/publications.pdf Version: 2024-02-01

	2962	3343
39,344	96	190
citations	h-index	g-index
329	329	10632
docs citations	times ranked	citing authors
	39,344 citations 329 docs citations	39,344 96 citations h-index 329 329 docs citations 329 times ranked

IOHN | DROVIS

#	Article	IF	CITATIONS
1	Binary alkali-activated systems obtained by the valorisation of calcined kaolin sludge and bottom ash. Advances in Cement Research, 2022, 34, 67-79.	0.7	4
2	Metakaolin-based geopolymers: Efflorescence and its effect on microstructure and mechanical properties. Ceramics International, 2022, 48, 2212-2229.	2.3	27
3	Innovation in Cements—Can We Meet Future Construction Needs Sustainably?. Lecture Notes in Civil Engineering, 2022, , 29-36.	0.3	2
4	Cement-based stabilization/solidification of radioactive waste. , 2022, , 407-431.		4
5	Spectroscopic evaluation of U ^{VI} –cement mineral interactions: ettringite and hydrotalcite. Journal of Synchrotron Radiation, 2022, 29, 89-102.	1.0	5
6	M&S highlight: Constantinides et al. (2003), On the use of nanoindentation for cementitious materials. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	0
7	Reversible Adsorption of Polycarboxylates on Silica Fume in High pH, High Ionic Strength Environments for Control of Concrete Fluidity. Langmuir, 2022, 38, 1662-1671.	1.6	6
8	Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer. Journal of Hazardous Materials, 2022, 429, 128373.	6.5	35
9	Time-resolved 3D characterisation of early-age microstructural development of Portland cement. Journal of Materials Science, 2022, 57, 4952-4969.	1.7	4
10	Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	71
11	M&S Highlight: Bischoff and Perry (1991), Compressive behaviour of concrete at high strain rates. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	0
12	Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materials. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	29
13	Geometric quality assurance for 3D concrete printing and hybrid construction manufacturing using a standardised test part for benchmarking capability. Cement and Concrete Research, 2022, 156, 106773.	4.6	19
14	Sustainable iron-rich cements: Raw material sources and binder types. Cement and Concrete Research, 2022, 157, 106834.	4.6	32
15	Decarbonisation of calcium carbonate in sodium hydroxide solutions under ambient conditions: effect of residence time and mixing rates. Physical Chemistry Chemical Physics, 2022, 24, 16125-16138.	1.3	5
16	Alkali-activated materials produced using high-calcium, high-carbon biomass ash. Cement and Concrete Composites, 2022, 132, 104646.	4.6	10
17	Simulation of radiation damage via alpha decay in BFS:PC grouts using 4He2+ ion acceleration. Cement and Concrete Research, 2022, 159, 106895.	4.6	0
18	Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools. Journal of Thermal Analysis and Calorimetry, 2021, 144, 1129-1138.	2.0	24

#	Article	IF	CITATIONS
19	Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: A comparative study. Cement and Concrete Research, 2021, 140, 106320.	4.6	58
20	Creep and Long-Term Properties of Alkali-Activated Swedish-Slag Concrete. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	17
21	Characterization of and Structural Insight into Struvite-K, MgKPO ₄ ·6H ₂ O, an Analogue of Struvite. Inorganic Chemistry, 2021, 60, 195-205.	1.9	29
22	Electrochemical cell design and impedance spectroscopy of cement hydration. Journal of Materials Science, 2021, 56, 1203-1220.	1.7	9
23	Thermodynamic properties of sodium aluminosilicate hydrate (N–A–S–H). Dalton Transactions, 2021, 50, 13968-13984.	1.6	14
24	Cementitious Materials Science. Theories and Applications. Edited by Lin Zongshou, Xing Weihong and Chen Wei. De Gruyter, 2019. XIII + pp. 403, Paperback. Price EUR 68.95. ISBN 978-3-11-057209-4. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 182-183.	0.5	0
25	Temperature transformation of blended magnesium potassium phosphate cement binders. Cement and Concrete Research, 2021, 141, 106332.	4.6	25
26	Early age hydration and application of blended magnesium potassium phosphate cements for reduced corrosion of reactive metals. Cement and Concrete Research, 2021, 143, 106375.	4.6	37
27	Mechanisms of passivation and chloride-induced corrosion of mild steel in sulfide-containing alkaline solutions. Journal of Materials Science, 2021, 56, 14783-14802.	1.7	17
28	Editorial: Covid-19: Materials Science and Engineering Challenges. Frontiers in Materials, 2021, 8, .	1.2	1
29	Producing cement clinker assemblages in the system: CaO-SiO2-Al2O3-SO3-CaCl2-MgO. Cement and Concrete Research, 2021, 144, 106418.	4.6	11
30	Evidence of formation of an amorphous magnesium silicate (AMS) phase during alkali activation of (Na-Mg) aluminosilicate glasses. Cement and Concrete Research, 2021, 145, 106464.	4.6	15
31	Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cements. Journal of Physical Chemistry C, 2021, 125, 20727-20739.	1.5	23
32	Editorial-Materials & Structures. Materials and Structures/Materiaux Et Constructions, 2021, 54, 199.	1.3	0
33	Mimicking Biosintering: The Identification of Highly Condensed Surfaces in Bioinspired Silica Materials. Langmuir, 2021, 37, 561-568.	1.6	3
34	Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO ₂ capture, through production of sodium carbonate. Energy and Environmental Science, 2021, 14, 6595-6604.	15.6	15
35	Extraction of Tricalcium Aluminate for Research Applications by Selective Dissolution of Portland Cement Clinker. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	5
36	Incorporation of strontium and calcium in geopolymer gels. Journal of Hazardous Materials, 2020, 382, 121015.	6.5	71

#	Article	IF	CITATIONS
37	Effects of plutonium dioxide encapsulation on the physico-chemical development of Portland cement blended grouts. Journal of Nuclear Materials, 2020, 530, 151960.	1.3	5
38	Nanostructure of CaO-(Na ₂ O)-Al ₂ O ₃ -SiO ₂ -H ₂ O Gels Revealed by Multinuclear Solid-State Magic Angle Spinning and Multiple Quantum Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 1681-1694	1.5	19
39	Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cement and Concrete Composites, 2020, 106, 103489.	4.6	108
40	Nanostructural evolution of alkali-activated mineral wools. Cement and Concrete Composites, 2020, 106, 103472.	4.6	30
41	Immobilization of cesium with alkali-activated blast furnace slag. Journal of Hazardous Materials, 2020, 388, 121765.	6.5	41
42	RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	30
43	The role of zinc in metakaolin-based geopolymers. Cement and Concrete Research, 2020, 136, 106194.	4.6	108
44	Estimation of standard molar entropy of cement hydrates and clinker minerals. Cement and Concrete Research, 2020, 136, 106188.	4.6	12
45	Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	123
46	Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 2020, 1, 559-573.	12.2	483
47	Field Strength of Network-Modifying Cation Dictates the Structure of (Na-Mg) Aluminosilicate Glasses. Frontiers in Materials, 2020, 7, .	1.2	24
48	Thermodynamic modelling of phase evolution in alkali-activated slag cements exposed to carbon dioxide. Cement and Concrete Research, 2020, 136, 106158.	4.6	56
49	Encapsulation of Sr-loaded titanate spent adsorbents in potassium aluminosilicate geopolymer. Journal of Nuclear Science and Technology, 2020, 57, 1181-1188.	0.7	12
50	1000 at 1000: Geopolymer technology—the current state of the art. Journal of Materials Science, 2020, 55, 13487-13489.	1.7	21
51	Automated correction for the movement of suspended particulate in microtomographic data. Chemical Engineering Science, 2020, 223, 115736.	1.9	3
52	RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	51
53	Modelling chloride transport in alkali-activated slags. Cement and Concrete Research, 2020, 130, 106011.	4.6	20
54	Hydration kinetics and products of MgO-activated blast furnace slag. Construction and Building Materials, 2020, 249, 118700.	3.2	46

#	Article	IF	CITATIONS
55	Towards designing reactive glasses for alkali activation: Understanding the origins of alkaline reactivity of Na-Mg aluminosilicate glasses. PLoS ONE, 2020, 15, e0244621.	1.1	6
56	Alkali aluminosilicate geopolymers as binders to encapsulate strontium-selective titanate ion-exchangers. Dalton Transactions, 2019, 48, 12116-12126.	1.6	25
57	RILEM TC 247-DTA round robin test: mix design and reproducibility of compressive strength of alkali-activated concretes. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	53
58	Efficient mix design of alkali activated slag concretes based on packing fraction of ingredients and paste thickness. Journal of Cleaner Production, 2019, 218, 438-449.	4.6	41
59	Gaseous carbonation of cementitious backfill for geological disposal of radioactive waste: Nirex Reference Vault Backfill. Applied Geochemistry, 2019, 106, 120-133.	1.4	7
60	Portland Cement Based Immobilization/Destruction of Chemical Weapon Agent Degradation Products. Industrial & Engineering Chemistry Research, 2019, 58, 10383-10393.	1.8	9
61	Recent progress in low-carbon binders. Cement and Concrete Research, 2019, 122, 227-250.	4.6	391
62	High strength/density ratio in a syntactic foam made from one-part mix geopolymer and cenospheres. Composites Part B: Engineering, 2019, 173, 106908.	5.9	53
63	Solid-state nuclear magnetic resonance spectroscopy of cements. Materials Today Advances, 2019, 1, 100007.	2.5	110
64	Geopolymers and Other Alkali-Activated Materials. , 2019, , 779-805.		17
65	Thermodynamic modelling of BFS-PC cements under temperature conditions relevant to the geological disposal of nuclear wastes. Cement and Concrete Research, 2019, 119, 21-35.	4.6	17
66	The Effect of Blast Furnace Slag/Fly Ash Ratio on Setting, Strength, and Shrinkage of Alkali-Activated Pastes and Concretes. Frontiers in Materials, 2019, 6, .	1.2	61
67	Effects of Curing Conditions on Shrinkage of Alkali-Activated High-MgO Swedish Slag Concrete. Frontiers in Materials, 2019, 6, .	1.2	19
68	Editorial: Innovation in Cements for Sustainability. Frontiers in Materials, 2019, 6, .	1.2	1
69	Layered double hydroxides modify the reaction of sodium silicate-activated slag cements. Green Materials, 2019, 7, 52-60.	1.1	8
70	Exploiting in-situ solid-state NMR spectroscopy to probe the early stages of hydration of calcium aluminate cement. Solid State Nuclear Magnetic Resonance, 2019, 99, 1-6.	1.5	25
71	Effect of drying procedures on pore structure and phase evolution of alkali-activated cements. Cement and Concrete Composites, 2019, 96, 194-203.	4.6	95
72	Alkali activation of a high MgO GCBS – fresh and hardened properties. Magazine of Concrete Research, 2018, 70, 1256-1264.	0.9	23

#	Article	IF	CITATIONS
73	Slag-Based Cements That Resist Damage Induced by Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 5067-5075.	3.2	39
74	Effect of mix design inputs, curing and compressive strength on the durability of Na2SO4-activated high volume fly ash concretes. Cement and Concrete Composites, 2018, 91, 11-20.	4.6	62
75	New Structural Model of Hydrous Sodium Aluminosilicate Gels and the Role of Charge-Balancing Extra-Framework Al. Journal of Physical Chemistry C, 2018, 122, 5673-5685.	1.5	75
76	Phase Formation and Evolution in Mg(OH) ₂ –Zeolite Cements. Industrial & Engineering Chemistry Research, 2018, 57, 2105-2113.	1.8	12
77	Influence of slag composition on the stability of steel in alkali-activated cementitious materials. Journal of Materials Science, 2018, 53, 5016-5035.	1.7	45
78	Phase evolution of slag-rich cementitious grouts for immobilisation of nuclear wastes. Advances in Cement Research, 2018, 30, 345-360.	0.7	13
79	Alkali-activated materials. Cement and Concrete Research, 2018, 114, 40-48.	4.6	1,030
80	Metakaolin-Based Geopolymers for Nuclear Waste Encapsulation. RILEM Bookseries, 2018, , 183-188.	0.2	7
81	The effect of blast-furnace slag particle size on the hydration of slag–Portland cement grouts at elevated temperatures. Advances in Cement Research, 2018, 30, 337-344.	0.7	6
82	Quantification of the influences of aggregate shape and sampling method on the overestimation of ITZ thickness in cementitious materials. Powder Technology, 2018, 326, 168-180.	2.1	53
83	Characterisation of a high pH cement backfill for the geological disposal of nuclear waste: The Nirex Reference Vault Backfill. Applied Geochemistry, 2018, 89, 180-189.	1.4	26
84	Response to the discussion by Hongyan Ma and Ying Li of the paper "Characterization of magnesium potassium phosphate cement blended with fly ash and ground granulated blast furnace slag― Cement and Concrete Research, 2018, 103, 249-253.	4.6	18
85	Outcomes of the round robin tests of RILEM TC 247-DTA on the durability of alkali-activated concrete. MATEC Web of Conferences, 2018, 199, 02024.	0.1	3
86	Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements. Sustainability, 2018, 10, 4709.	1.6	47
87	Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Construction and Building Materials, 2018, 190, 191-199.	3.2	84
88	Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	144
89	Leaching of Nirex Reference Vault Backfill cement by clay, granite and saline groundwaters. MRS Advances, 2018, 3, 1175-1180.	0.5	2
90	Blast furnace slag-Mg(OH) ₂ cements activated by sodium carbonate. RSC Advances, 2018, 8, 23101-23118.	1.7	38

#	Article	IF	CITATIONS
91	Metakaolin. RILEM State-of-the-Art Reports, 2018, , 153-179.	0.3	6
92	Role of soluble aluminum species in the activating solution for synthesis of silico-aluminophosphate geopolymers. Cement and Concrete Composites, 2018, 93, 186-195.	4.6	58
93	Alkali Activated Slag Mortars Provide High Resistance to Chloride-Induced Corrosion of Steel. Frontiers in Materials, 2018, 5, .	1.2	50
94	Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers. Cement and Concrete Composites, 2018, 92, 165-177.	4.6	134
95	Atomistic Simulations of Geopolymer Models: The Impact of Disorder on Structure and Mechanics. ACS Applied Materials & Interfaces, 2018, 10, 22809-22820.	4.0	77
96	Structural Ordering of Aged and Hydrothermally Cured Metakaolin Based Potassium Geopolymers. RILEM Bookseries, 2018, , 232-237.	0.2	2
97	Phase diagrams for alkali-activated slag binders. Cement and Concrete Research, 2017, 95, 30-38.	4.6	155
98	Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	101
99	Interactions between Simulant Vitrified Nuclear Wastes and high pH solutions: A Natural Analogue Approach. MRS Advances, 2017, 2, 669-675.	0.5	4
100	Structural evolution of synthetic alkali-activated CaO-MgO-Na 2 O-Al 2 O 3 -SiO 2 materials is influenced by Mg content. Cement and Concrete Research, 2017, 99, 155-171.	4.6	73
101	Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement. Cement and Concrete Research, 2017, 100, 1-13.	4.6	224
102	Comparison of calorimetric methods for the assessment of slag cement hydration. Advances in Applied Ceramics, 2017, 116, 186-192.	0.6	15
103	Computational modelling of interactions between gold complexes and silicates. Computational and Theoretical Chemistry, 2017, 1101, 113-121.	1.1	11
104	Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes. Cement and Concrete Research, 2017, 100, 385-397.	4.6	148
105	Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. Journal of Cleaner Production, 2017, 166, 680-689.	4.6	132
106	Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars. Materials and Structures/Materiaux Et Constructions, 2017, 50, 252.	1.3	52
107	Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes. Materials and Structures/Materiaux Et Constructions, 2017, 50, 235.	1.3	88
108	Characterization of supplementary cementitious materials by thermal analysis. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	64

#	Article	IF	CITATIONS
109	Calorimetric study of geopolymer binders based on natural pozzolan. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2181-2190.	2.0	37
110	Bubble stabilisation improves strength of lightweight mortars. Proceedings of Institution of Civil Engineers: Construction Materials, 2017, 170, 134-140.	0.7	4
111	Alternative inorganic binders based on alkali-activated metallurgical slags. , 2017, , 185-220.		15
112	Leaching assessment as a component of environmental safety and durability analyses for NORM containing building materials. , 2017, , 253-288.		1
113	From NORM by-products to building materials. , 2017, , 183-252.		14
114	Optimum Green Concrete Using Different High Volume Fly Ash Activated Systems. , 2017, , 145-153.		1
115	Calorimetric study of geopolymer binders based on natural pozzolan. , 2017, 127, 2181.		1
116	Activated Hybrid Cementitious System Using Portland Cement and Fly Ash with Na2SO4. , 2017, , 139-144.		0
117	Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. Construction and Building Materials, 2016, 122, 373-383.	3.2	91
118	Management and valorisation of wastes through use in producing alkaliâ€activated cement materials. Journal of Chemical Technology and Biotechnology, 2016, 91, 2365-2388.	1.6	121
119	Alkali-activation potential of biomass-coal co-fired fly ash. Cement and Concrete Composites, 2016, 73, 62-74.	4.6	46
120	Gamma irradiation resistance of early age Ba(OH)2-Na2SO4-slag cementitious grouts. Journal of Nuclear Materials, 2016, 482, 266-277.	1.3	13
121	Role of Microstructure and Surface Defects on the Dissolution Kinetics of CeO ₂ , a UO ₂ Fuel Analogue. ACS Applied Materials & Interfaces, 2016, 8, 10562-10571.	4.0	56
122	Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders. Powder Technology, 2016, 297, 17-33.	2.1	40
123	Toward an indexing approach to evaluate fly ashes for geopolymer manufacture. Cement and Concrete Research, 2016, 85, 163-173.	4.6	107
124	Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cement and Concrete Research, 2016, 89, 120-135.	4.6	256
125	Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Advances in Cement Research, 2016, 28, 262-273.	0.7	78
126	Evaluation of activated high volume fly ash systems using Na 2 SO 4 , lime and quicklime in mortars with high loss on ignition fly ashes. Construction and Building Materials, 2016, 128, 248-255.	3.2	75

#	Article	IF	CITATIONS
127	Optimization of the MgO SiO2 binding system for fiber-cement production with cellulosic reinforcing elements. Materials and Design, 2016, 105, 251-261.	3.3	34
128	Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?. Chemical Reviews, 2016, 116, 4170-4204.	23.0	564
129	Phase evolution of Na ₂ O–Al ₂ O ₃ –SiO ₂ –H ₂ O gels in synthetic aluminosilicate binders. Dalton Transactions, 2016, 45, 5521-5535.	1.6	74
130	Structural evolution of an alkali sulfate activated slag cement. Journal of Nuclear Materials, 2016, 468, 97-104.	1.3	118
131	Valorisation of a kaolin mining waste for the production of geopolymers. Journal of Cleaner Production, 2016, 115, 265-272.	4.6	75
132	Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cement and Concrete Research, 2016, 81, 24-37.	4.6	213
133	A discussion of the papers " Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements †and " Enhancing the carbonation of MgO cement porous blocks through improved curing conditions â€, by C. Unluer & amp; A. Al-Tabbaa. Cement and Concrete Research, 2016, 79, 424-426.	4.6	13
134	Gamma irradiation resistance of an early age slag-blended cement matrix for nuclear waste encapsulation. Journal of Materials Research, 2015, 30, 1563-1571.	1.2	26
135	Editorial introduction – Journal of Sustainable Cement-Based Materials special issue on chemically activated materials. Journal of Sustainable Cement-Based Materials, 2015, 4, 73-73.	1.7	Ο
136	Cement and concrete science. Advances in Applied Ceramics, 2015, 114, 361-361.	0.6	0
137	Editorial: Alkali-activated materials, geopolymers, concrete and sustainability. Magazine of Concrete Research, 2015, 67, 1125-1126.	0.9	0
138	Grand Challenges in Structural Materials. Frontiers in Materials, 2015, 2, .	1.2	21
139	Composition–solubility–structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H). Dalton Transactions, 2015, 44, 13530-13544.	1.6	61
140	Milestones in the analysis of alkali-activated binders. Journal of Sustainable Cement-Based Materials, 2015, 4, 74-84.	1.7	15
141	Stoichiometrically controlled C–(A)–S–H/N–A–S–H gel blends via alkali-activation of synthetic precursors. Advances in Applied Ceramics, 2015, 114, 372-377.	0.6	28
142	Evolution of phase assemblage of blended magnesium potassium phosphate cement binders at 200° and 1000°C. Advances in Applied Ceramics, 2015, 114, 386-392.	0.6	26
143	Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders. Cement and Concrete Research, 2015, 70, 21-28.	4.6	39
144	Physical characterization methods for supplementary cementitious materials. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3675-3686.	1.3	40

#	Article	IF	CITATIONS
145	Time-resolved yield stress measurement of evolving materials using a creeping sphere. Rheologica Acta, 2015, 54, 365-376.	1.1	6
146	Characterising the Reaction of Metakaolin in an Alkaline Environment by XPS, and Time- and Spatially-Resolved FTIR Spectroscopy. RILEM Bookseries, 2015, , 299-304.	0.2	5
147	What Happens to 5 Year Old Metakaolin Geopolymers' the Effect of Alkali Cation. RILEM Bookseries, 2015, , 315-321.	0.2	5
148	Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cement and Concrete Composites, 2015, 62, 97-105.	4.6	398
149	Advances in understanding alkali-activated materials. Cement and Concrete Research, 2015, 78, 110-125.	4.6	954
150	Thermodynamic modelling of alkali-activated slag cements. Applied Geochemistry, 2015, 61, 233-247.	1.4	160
151	Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag. Cement and Concrete Research, 2015, 74, 78-87.	4.6	234
152	Structure and properties of binder gels formed in the system Mg(OH) ₂ –SiO ₂ –H ₂ O for immobilisation of Magnox sludge. Dalton Transactions, 2015, 44, 8126-8137.	1.6	102
153	Computational modelling of gold complexes using density functional theory. Computational and Theoretical Chemistry, 2015, 1073, 45-54.	1.1	12
154	Microstructure and durability of alkali-activated materials as key parameters for standardization. Journal of Sustainable Cement-Based Materials, 2015, 4, 116-128.	1.7	59
155	Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions. Cement and Concrete Research, 2015, 68, 83-93.	4.6	275
156	The Role of Al in Crossâ€Linking of Alkaliâ€Activated Slag Cements. Journal of the American Ceramic Society, 2015, 98, 996-1004.	1.9	181
157	Oneâ€Part Geopolymers Based on Thermally Treated Red Mud/NaOH Blends. Journal of the American Ceramic Society, 2015, 98, 5-11.	1.9	184
158	Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3687-3701.	1.3	95
159	Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Materials and Structures/Materiaux Et Constructions, 2015, 48, 653-669.	1.3	79
160	Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux Et Constructions, 2015, 48, 517-529.	1.3	186
161	Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales De Construccion, 2015, 65, e049.	0.2	60
162	El contenido de agua modifica el desarrollo estructural de cementantes de escoria activada con metasilicato de sodio. Revista ALCONPAT, 2015, 5, 31-43.	0.2	0

#	Article	IF	CITATIONS
163	Alumina. , 2015, , 1-4.		О
164	Cementitious binders in the system Mg(OH) ₂ –NaAlO ₂ –SiO ₂ –H ₂ O. Advances in Applied Ceramics, 2014, 113, 496-501.	0.6	4
165	Chemical characterisation of metakaolin and fly ash based geopolymers during exposure to solvents used in carbon capture. International Journal of Greenhouse Gas Control, 2014, 27, 255-266.	2.3	19
166	Other Potential Applications for Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 339-379.	0.3	11
167	Phosphate modification of calcium aluminate cement to enhance stability for immobilisation of metallic wastes. Advances in Applied Ceramics, 2014, 113, 453-459.	0.6	16
168	Green concrete or red herring? – future of alkali-activated materials. Advances in Applied Ceramics, 2014, 113, 472-477.	0.6	56
169	Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 2014, 45, 125-135.	4.6	806
170	Natural carbonation of aged alkali-activated slag concretes. Materials and Structures/Materiaux Et Constructions, 2014, 47, 693-707.	1.3	114
171	Using fly ash to partially substitute metakaolin in geopolymer synthesis. Applied Clay Science, 2014, 88-89, 194-201.	2.6	145
172	Durability of Alkaliâ€Activated Materials: Progress and Perspectives. Journal of the American Ceramic Society, 2014, 97, 997-1008.	1.9	320
173	MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cement and Concrete Research, 2014, 57, 33-43.	4.6	334
174	Geopolymers and other alkali activated materials: why, how, and what?. Materials and Structures/Materiaux Et Constructions, 2014, 47, 11-25.	1.3	621
175	Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste. Journal of Materials Science, 2014, 49, 2761-2772.	1.7	59
176	Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 2014, 56, 113-127.	3.2	594
177	The fate of iron in blast furnace slag particles during alkali-activation. Materials Chemistry and Physics, 2014, 146, 1-5.	2.0	36
178	Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 2014, 64, 30-41.	4.6	341
179	Modelling the yield stress of ternary cement–slag–fly ash pastes based on particle size distribution. Powder Technology, 2014, 266, 203-209.	2.1	64
180	A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation. Cement and Concrete Research, 2014, 66, 27-47.	4.6	186

#	Article	IF	CITATIONS
181	Characterisation of Ba(OH)2–Na2SO4–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes. Cement and Concrete Research, 2014, 66, 64-74.	4.6	38
182	Distinctive microstructural features of aged sodium silicate-activated slag concretes. Cement and Concrete Research, 2014, 65, 41-51.	4.6	80
183	Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes. Construction and Building Materials, 2014, 61, 79-89.	3.2	148
184	Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research, 2014, 44, 299-327.	4.3	908
185	The effect of grinding mechanism on the preg-robbing of gold onto quartz. International Journal of Mineral Processing, 2014, 128, 1-5.	2.6	11
186	The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Construction and Building Materials, 2014, 66, 53-62.	3.2	103
187	Effects of grinding on the preg-robbing behaviour of pyrophyllite. Hydrometallurgy, 2014, 146, 154-163.	1.8	22
188	The interrelationship between surface chemistry and rheology in alkali activated slag paste. Construction and Building Materials, 2014, 65, 583-591.	3.2	170
189	Introduction and Scope. RILEM State-of-the-Art Reports, 2014, , 1-9.	0.3	19
190	Durability and Testing – Physical Processes. RILEM State-of-the-Art Reports, 2014, , 277-307.	0.3	4
191	Demonstration Projects and Applications in Building and Civil Infrastructure. RILEM State-of-the-Art Reports, 2014, , 309-338.	0.3	15
192	Historical Aspects and Overview. RILEM State-of-the-Art Reports, 2014, , 11-57.	0.3	18
193	Binder Chemistry – High-Calcium Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 59-91.	0.3	41
194	Binder Chemistry – Low-Calcium Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 93-123.	0.3	23
195	Binder Chemistry – Blended Systems and Intermediate Ca Content. RILEM State-of-the-Art Reports, 2014, , 125-144.	0.3	26
196	Admixtures. RILEM State-of-the-Art Reports, 2014, , 145-156.	0.3	3
197	Durability and Testing – Chemical Matrix Degradation Processes. RILEM State-of-the-Art Reports, 2014, , 177-221	0.3	6
198	Durability and Testing – Degradation via Mass Transport. RILEM State-of-the-Art Reports, 2014, , 223-276.	0.3	12

#	Article	IF	CITATIONS
199	Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir, 2013, 29, 5294-5306.	1.6	383
200	Structure of kaolinite and influence of stacking faults: Reconciling theory and experiment using inelastic neutron scattering analysis. Journal of Chemical Physics, 2013, 138, 194501.	1.2	12
201	Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures/Materiaux Et Constructions, 2013, 46, 361-373.	1.3	270
202	Effects of grinding on the preg-robbing potential of quartz in an acidic chloride medium. Minerals Engineering, 2013, 52, 31-37.	1.8	32
203	Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochimica Acta, 2013, 565, 163-171.	1.2	170
204	In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Applied Clay Science, 2013, 73, 17-25.	2.6	82
205	Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cement and Concrete Research, 2013, 53, 127-144.	4.6	593
206	Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 2013, 35, 1-11.	4.6	142
207	Inelastic neutron scattering analysis of the thermal decomposition of kaolinite to metakaolin. Chemical Physics, 2013, 427, 82-86.	0.9	14
208	Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Construction and Building Materials, 2013, 48, 1187-1201.	3.2	390
209	Drying-induced changes in the structure of alkali-activated pastes. Journal of Materials Science, 2013, 48, 3566-3577.	1.7	150
210	In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics. Physical Chemistry Chemical Physics, 2013, 15, 8573.	1.3	60
211	Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 2013, 109, 493-502.	3.4	66
212	Nanostructural characterization of geopolymers by advanced beamline techniques. Cement and Concrete Composites, 2013, 36, 56-64.	4.6	33
213	Adsorption of gold on albite in acidic chloride media. Hydrometallurgy, 2013, 134-135, 32-39.	1.8	10
214	Reduction of gold(III) chloride to gold(0) on silicate surfaces. Journal of Colloid and Interface Science, 2013, 389, 252-259.	5.0	44
215	Effect of ground granulated blast furnace slag particle size distribution on paste rheology: A preliminary model. AIP Conference Proceedings, 2013, , .	0.3	5
216	Ultra Optimum Green Concrete Using High Volume Fly Ash Activated Systems. Materials Research Society Symposia Proceedings, 2013, 1612, 1.	0.1	0

#	Article	IF	CITATIONS
217	Highâ€Resolution <scp>X</scp> â€ray Diffraction and Fluorescence Microscopy Characterization of Alkaliâ€Activated Slagâ€Metakaolin Binders. Journal of the American Ceramic Society, 2013, 96, 1951-1957.	1.9	79
218	Alkali-activated Binders and Concretes: The Path to Standardization. , 2013, , 185-195.		3
219	Development, Standardization, and Applications of Alkali-activated Concretes. , 2013, , 196-212.		9
220	Performance of alkali-activated slag mortars exposed to acids. Journal of Sustainable Cement-Based Materials, 2012, 1, 138-151.	1.7	90
221	Development of Sustainable Cements and Concretes. Journal of Sustainable Cement-Based Materials, 2012, 1, 153-153.	1.7	0
222	Supplementary Cementitious Materials for Concrete: Characterization Needs. Materials Research Society Symposia Proceedings, 2012, 1488, 8.	0.1	39
223	Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry. Cement and Concrete Research, 2012, 42, 1317-1326.	4.6	247
224	Comment on "Structure-Directing Role of Counterions in the Initial Stage of Zeolite Synthesisâ€ . Journal of Physical Chemistry C, 2012, 116, 1619-1621.	1.5	10
225	Comment on E. Prud'Homme et al., "Structural characterization of geomaterial foams — Thermal behaviorâ€, J. Non-Cryst. Solids, 2011. Journal of Non-Crystalline Solids, 2012, 358, 715-716.	1.5	1
226	Dilatometry of geopolymers as a means of selecting desirable fly ash sources. Journal of Non-Crystalline Solids, 2012, 358, 1930-1937.	1.5	63
227	Structure of Portland Cement Pastes Blended with Sonicated Silica Fume. Journal of Materials in Civil Engineering, 2012, 24, 1295-1304.	1.3	25
228	Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. Journal of Sustainable Cement-Based Materials, 2012, 1, 154-166.	1.7	119
229	Stabilization of Low-Modulus Sodium Silicate Solutions by Alkali Substitution. Industrial & Engineering Chemistry Research, 2012, 51, 2483-2486.	1.8	21
230	Acid resistance of inorganic polymer binders. 1. Corrosion rate. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1-14.	1.3	145
231	Molecular mechanisms responsible for the structural changes occurring during geopolymerization: Multiscale simulation. AICHE Journal, 2012, 58, 2241-2253.	1.8	60
232	Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste and Biomass Valorization, 2012, 3, 99-108.	1.8	168
233	Thermal Activation of Albite for the Synthesis of Oneâ€Part Mix Geopolymers. Journal of the American Ceramic Society, 2012, 95, 565-572.	1.9	164
234	Efflorescence control in geopolymer binders based on natural pozzolan. Cement and Concrete Composites, 2012, 34, 25-33.	4.6	334

#	Article	IF	CITATIONS
235	X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 2012, 42, 855-864.	4.6	394
236	Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Construction and Building Materials, 2012, 33, 99-108.	3.2	304
237	Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 2012, 29, 89-104.	1.8	584
238	Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochimica Acta, 2012, 539, 23-33.	1.2	330
239	Desempeño a temperaturas altas de morteros y hormigones basados en mezclas de escoria/metacaolÃn activadas alcalinamente. Materiales De Construccion, 2012, 62, 471-488. Comment on "Thermodynamics of Solvent Extraction of Rhenium with Trioctyl Amine―(Fang, Dw.; Gu,) Tj E	0.2 TQq0 0 0	35 rgBT /Overlo
240	"Studies on Solvent Extraction of Perrhenate with Trialkylamine by Debyeâ^'HuÌ^ckel and Pitzer Equations―(Fang, Dw.; Gu, Xj.; Xiong, Y.; Shan, Wj.; Zang, Sl. <i>J. Chem. Eng.) Tj ETQq0 0 0 rgBT /Overlock</i>	10 [.] 9f 50 5	532 Td (Data
241	686-687. Real-Time High-Resolution X-ray Imaging and Nuclear Magnetic Resonance Study of the Hydration of Pure and Na-Doped C ₃ A in the Presence of Sulfates. Inorganic Chemistry, 2011, 50, 1203-1212.	1.9	26
242	Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Transactions, 2011, 40, 1348-1355.	1.6	66
243	The use of XANES to clarify issues related to bonding environments in metakaolin: a discussion of the paper S. Sperinck et al., "Dehydroxylation of kaolinite to metakaolin-a molecular dynamics study,―J. Mater. Chem., 2011, 21, 2118–2125. Journal of Materials Chemistry, 2011, 21, 7007.	6.7	23
244	Effect of Temperature on the Local Structure of Kaolinite Intercalated with Potassium Acetate. Chemistry of Materials, 2011, 23, 188-199.	3.2	33
245	Quantitative Mechanistic Modeling of Silica Solubility and Precipitation during the Initial Period of Zeolite Synthesis. Journal of Physical Chemistry C, 2011, 115, 9879-9888.	1.5	28
246	Evolution of Local Structure in Geopolymer Gels: An <i>In Situ</i> Neutron Pair Distribution Function Analysis. Journal of the American Ceramic Society, 2011, 94, 3532-3539.	1.9	110
247	Gold sorption by silicates in acidic and alkaline chloride media. International Journal of Mineral Processing, 2011, 100, 149-156.	2.6	29
248	Hard X-ray nanotomography of amorphous aluminosilicate cements. Scripta Materialia, 2011, 65, 316-319.	2.6	46
249	Advances in alternative cementitious binders. Cement and Concrete Research, 2011, 41, 1232-1243.	4.6	1,232
250	Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, 2011, 46, 5477-5486.	1.7	306
251	Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites, 2011, 33, 46-54.	4.6	513
252	Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research, 2011, 41, 1-8.	4.6	370

#	Article	IF	CITATIONS
253	The effect of silica availability on the mechanism of geopolymerisation. Cement and Concrete Research, 2011, 41, 210-216.	4.6	190
254	Non-traditional ("geopolymerâ€) cements and concretes for construction of large CCS equipment. Energy Procedia, 2011, 4, 2058-2065.	1.8	8
255	Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. Journal of Colloid and Interface Science, 2011, 357, 384-392.	5.0	98
256	Durability of fly ash/GGBFS based geopolymers exposed to carbon capture solvents. Advances in Applied Ceramics, 2011, 110, 446-452.	0.6	18
257	Solving the Structure of Metakaolin. , 2011, , 274-287.		1
258	Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials. Waste and Biomass Valorization, 2010, 1, 145-155.	1.8	344
259	The role of particle technology in developing sustainable construction materials. Advanced Powder Technology, 2010, 21, 2-7.	2.0	201
260	Discussion of Y. Zhang et al., "Study of ion cluster reorientation process of geopolymerisation reaction using semi-empirical AM1 calculations,―Cem Concr Res 39(12): 1174–1179; 2009. Cement and Concrete Research, 2010, 40, 827-828.	4.6	4
261	Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 2010, 40, 898-907.	4.6	341
262	Pore solution composition and alkali diffusion in inorganic polymer cement. Cement and Concrete Research, 2010, 40, 1386-1392.	4.6	274
263	Discussion of C. Li et al., "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cementsâ€, Cement and Concrete Research, 2010, 40, 1766-1767.	4.6	13
264	The Effects of Temperature on the Local Structure of Metakaolinâ€Based Geopolymer Binder: A Neutron Pair Distribution Function Investigation. Journal of the American Ceramic Society, 2010, 93, 3486-3492.	1.9	135
265	Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Physical Chemistry Chemical Physics, 2010, 12, 3239.	1.3	137
266	Effect of Alumina Release Rate on the Mechanism of Geopolymer Gel Formation. Chemistry of Materials, 2010, 22, 5199-5208.	3.2	238
267	Density Functional Modeling of the Local Structure of Kaolinite Subjected to Thermal Dehydroxylation. Journal of Physical Chemistry A, 2010, 114, 4988-4996.	1.1	113
268	Geopolymer synthesis kinetics. , 2009, , 118-136.		12
269	Activating solution chemistry for geopolymers. , 2009, , 50-71.		61

270 Introduction to geopolymers. , 2009, , 1-11.

#	Article	IF	CITATIONS
271	Immobilisation of toxic wastes in geopolymers. , 2009, , 421-440.		12
272	Nanostructure/microstructure of metakaolin geopolymers. , 2009, , 72-88.		16
273	Generalized biaxial shearing of MQMAS NMR spectra. Journal of Magnetic Resonance, 2009, 200, 167-172.	1.2	15
274	Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles. Journal of Materials Science, 2009, 44, 608-619.	1.7	134
275	Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder. Journal of Materials Science, 2009, 44, 620-631.	1.7	135
276	Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood's metal intrusion. Microporous and Mesoporous Materials, 2009, 126, 32-39.	2.2	128
277	Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 336, 57-63.	2.3	174
278	High-Resolution Nanoprobe X-ray Fluorescence Characterization of Heterogeneous Calcium and Heavy Metal Distributions in Alkali-Activated Fly Ash. Langmuir, 2009, 25, 11897-11904.	1.6	66
279	What Is the Structure of Kaolinite? Reconciling Theory and Experiment. Journal of Physical Chemistry B, 2009, 113, 6756-6765.	1.2	63
280	Analysing and Manipulating the Nanostructure of Geopolymers. , 2009, , 113-118.		1
281	Geopolymers. , 2009, , .		310
282	Geopolymerisation kinetics. 3. Effects of Cs and Sr salts. Chemical Engineering Science, 2008, 63, 4480-4489.	1.9	79
283	Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. Journal of Hazardous Materials, 2008, 157, 587-598.	6.5	280
284	The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318, 97-105.	2.3	179
285	Carbonate mineral addition to metakaolin-based geopolymers. Cement and Concrete Composites, 2008, 30, 979-985.	4.6	169
286	Effect of calcium silicate sources on geopolymerisation. Cement and Concrete Research, 2008, 38, 554-564.	4.6	469
287	The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers. Cement and Concrete Research, 2008, 38, 681-688.	4.6	56
288	Designing Precursors for Geopolymer Cements. Journal of the American Ceramic Society, 2008, 91, 3864-3869.	1.9	477

#	Article	IF	CITATIONS
289	One-Part Geopolymer Mixes from Geothermal Silica and Sodium Aluminate. Industrial & Engineering Chemistry Research, 2008, 47, 9396-9405.	1.8	184
290	Atomic Structure of a Cesium Aluminosilicate Geopolymer: A Pair Distribution Function Study. Chemistry of Materials, 2008, 20, 4768-4776.	3.2	106
291	Structural Evolution of Fly Ash Based Geopolymers in Alkaline Environments. Industrial & Engineering Chemistry Research, 2008, 47, 2991-2999.	1.8	54
292	Modeling Silica Nanoparticle Dissolution in TPAOHâ^'TEOSâ^'H2O Solutions. Journal of Physical Chemistry C, 2008, 112, 14769-14775.	1.5	16
293	Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry. Chemical Engineering Science, 2007, 62, 2309-2317.	1.9	173
294	In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation. Langmuir, 2007, 23, 9076-9082.	1.6	311
295	Attenuated Total Reflectance Fourier Transform Infrared Analysis of Fly Ash Geopolymer Gel Aging. Langmuir, 2007, 23, 8170-8179.	1.6	331
296	The role of inorganic polymer technology in the development of â€~green concrete'. Cement and Concrete Research, 2007, 37, 1590-1597.	4.6	1,408
297	Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chemical Engineering Science, 2007, 62, 2318-2329.	1.9	248
298	Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 2007, 139, 506-513.	6.5	411
299	Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry. Journal of Materials Science, 2007, 42, 2974-2981.	1.7	47
300	Geopolymer technology: the current state of the art. Journal of Materials Science, 2007, 42, 2917-2933.	1.7	3,163
301	Silica Nanoparticle Formation in the TPAOHâ^'TEOSâ^'H2O System:  A Population Balance Model. Journal of Physical Chemistry B, 2006, 110, 3098-3108.	1.2	46
302	39K NMR of Free Potassium in Geopolymers. Industrial & Engineering Chemistry Research, 2006, 45, 9208-9210.	1.8	83
303	Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269, 47-58.	2.3	1,274
304	The Role of Mathematical Modelling and Gel Chemistry in Advancing Geopolymer Technology. Chemical Engineering Research and Design, 2005, 83, 853-860.	2.7	125
305	Statistical Thermodynamic Model for Si/Al Ordering in Amorphous Aluminosilicates. Chemistry of Materials, 2005, 17, 2976-2986.	3.2	117
306	29Si NMR Study of Structural Ordering in Aluminosilicate Geopolymer Gels. Langmuir, 2005, 21, 3028-3036.	1.6	362

#	Article	IF	CITATIONS
307	Modeling Speciation in Highly Concentrated Alkaline Silicate Solutions. Industrial & Engineering Chemistry Research, 2005, 44, 8899-8908.	1.8	86
308	Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chemistry of Materials, 2005, 17, 3075-3085.	3.2	621
309	Modeling Multicomponent Ion Exchange:Â Application of the Single-Parameter Binary System Model. Industrial & Engineering Chemistry Research, 2005, 44, 2250-2257.	1.8	6
310	Single-Parameter Model for Binary Ion-Exchange Equilibria. Industrial & Engineering Chemistry Research, 2004, 43, 7870-7879.	1.8	5
311	A kinetic model for the acid-oxygen pressure leaching of Ni–Cu matte. Hydrometallurgy, 2003, 70, 83-99.	1.8	25
312	Will Geopolymers Stand the Test of Time?. , 0, , 235-248.		7
313	The Interfacial Transition Zone in Alkali-Activated Slag Mortars. Frontiers in Materials, 0, 2, .	1.2	34
314	On the use of the Jander equation in cement hydration modelling. RILEM Technical Letters, 0, 1, 62-66.	0.0	21
315	Steel corrosion in reinforced alkali-activated materials. RILEM Technical Letters, 0, 2, 33-39.	0.0	42
316	Early-age characterisation of Portland cement by impedance spectroscopy. Advances in Cement Research, 0, , 1-36.	0.7	2