
Ronghui Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/879473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-exciter stationary non-Gaussian random vibration test with time domain randomization. Mechanical Systems and Signal Processing, 2019, 122, 103-116.	4.4	30
2	Generation of sine on random vibrations for multi-axial fatigue tests. Mechanical Systems and Signal Processing, 2019, 126, 649-661.	4.4	28
3	Multiple-input multiple-output non-stationary non-Gaussian random vibration control by inverse system method. Mechanical Systems and Signal Processing, 2019, 124, 124-141.	4.4	17
4	Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration. Chinese Journal of Aeronautics, 2017, 30, 1895-1906.	2.8	15
5	A damage gradient model for fatigue life prediction of notched metallic structures under multiaxial random vibrations. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2101-2115.	1.7	11
6	Control Method for Multiple-Input Multiple-Output Non-Gaussian Random Vibration Test. Packaging Technology and Science, 2017, 30, 331-345.	1.3	9
7	Two time domain models for fatigue life prediction under multiaxial random vibrations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 4707-4718.	1.1	7
8	Stationary non-Gaussian random vibration control: A review. Chinese Journal of Aeronautics, 2021, 34, 350-363.	2.8	7
9	Analysis of low damping ratios in multi-exciter stationary non-Gaussian random vibration control. JVC/Journal of Vibration and Control, 2020, 26, 1463-1470.	1.5	6
10	A simplified modelling and analysis of six degree of freedom random vibration test. Mechanical Systems and Signal Processing, 2021, 150, 107304.	4.4	5
11	Multi-shaker half sine shock on random mixed vibration control. Journal of Sound and Vibration, 2021, 512, 116372.	2.1	5
12	Fatigue life calculation of notched specimens by modified Wöhler curve method and theory of critical distance under multiaxial random loading. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 514-529.	1.7	5
13	Probability distributions control for multi-input multi-output stationary non-Gaussian random vibration test. JVC/Journal of Vibration and Control, 0, , 107754631774750.	1.5	4
14	Power spectrum and kurtosis separation method for multi-shaker non-Gaussian random vibration control. Mechanical Systems and Signal Processing, 2022, 162, 108015.	4.4	3
15	Swept-sine integration method for complex amplitude extraction of swept-sine signal. Journal of Mechanical Science and Technology, 2020, 34, 4981-4988.	0.7	3
16	Continuous convolution and nonlinear transformation for multi-shaker non-Gaussian random vibration control. JVC/Journal of Vibration and Control, 2022, 28, 83-91.	1.5	2
17	An Adaptive Operational Modal Analysis Method Using Encoder LSTM with Random Decrement Technique. Journal of Sensors, 2021, 2021, 1-11.	0.6	2
18	Control strategy for multi-axial swept sine on random mixed vibration testing. Journal of Sound and Vibration, 2022, 527, 116846.	2.1	1

#	Article	IF	CITATIONS
19	Half sine shock on random control method for multi-axial vibration testing. JVC/Journal of Vibration and Control, 2023, 29, 2995-3005.	1.5	1
20	Multi-shaker shock response spectra replication control. JVC/Journal of Vibration and Control, 2023, 29, 3744-3755.	1.5	1
21	An Adaptive Operational Modal Analysis under Non-White Noise Excitation Using Hybrid Neural Networks. Applied Sciences (Switzerland), 2022, 12, 2471.	1.3	0