
Eleanor Pj Stride

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8794712/publications.pdf Version: 2024-02-01

FLEANOD DI STDIDE

#	Article	IF	CITATIONS
1	Electrospinning versus fibre production methods: from specifics to technological convergence. Chemical Society Reviews, 2012, 41, 4708.	38.1	548
2	The cytoplasm of living cells behaves as a poroelastic material. Nature Materials, 2013, 12, 253-261.	27.5	527
3	Liposome production by microfluidics: potential and limiting factors. Scientific Reports, 2016, 6, 25876.	3.3	273
4	Microbubble ultrasound contrast agents: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2003, 217, 429-447.	1.8	270
5	Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus, 2011, 1, 520-539.	3.0	248
6	Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. Journal of Controlled Release, 2015, 203, 51-56.	9.9	225
7	Novel microbubble preparation technologies. Soft Matter, 2008, 4, 2350.	2.7	219
8	Mapping the Influence of Solubility and Dielectric Constant on Electrospinning Polycaprolactone Solutions. Macromolecules, 2012, 45, 4669-4680.	4.8	211
9	Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. Ultrasound in Medicine and Biology, 2020, 46, 1296-1325.	1.5	193
10	Ultrasound-Propelled Nanocups for Drug Delivery. Small, 2015, 11, 5305-5314.	10.0	191
11	Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS Nano, 2017, 11, 8560-8578.	14.6	172
12	Physical Principles of Microbubbles for Ultrasound Imaging and Therapy. Cerebrovascular Diseases, 2009, 27, 1-13.	1.7	166
13	Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9225-9230.	7.1	128
14	Nanoparticle‣oaded Protein–Polymer Nanodroplets for Improved Stability and Conversion Efficiency in Ultrasound Imaging and Drug Delivery. Advanced Materials, 2015, 27, 5484-5492.	21.0	122
15	Microbubble Agents: New Directions. Ultrasound in Medicine and Biology, 2020, 46, 1326-1343.	1.5	118
16	Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle. Biomaterials, 2016, 80, 20-32.	11.4	116
17	Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 382, 154-164.	4.7	113
18	Ultrasound Contrast Agent Modeling: A Review. Ultrasound in Medicine and Biology, 2020, 46, 2117-2144.	1.5	110

#	Article	IF	CITATIONS
19	Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. Journal of the Royal Society Interface, 2008, 5, 1255-1261.	3.4	109
20	A New Method for the Preparation of Monoporous Hollow Microspheres. Langmuir, 2010, 26, 5115-5121.	3.5	108
21	Applications and limitations of machine learning in radiation oncology. British Journal of Radiology, 2019, 92, 20190001.	2.2	105
22	Controlled Microchannelling in Dense Collagen Scaffolds by Soluble Phosphate Glass Fibers. Biomacromolecules, 2007, 8, 543-551.	5.4	103
23	One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. Journal of the Royal Society Interface, 2010, 7, 667-675.	3.4	96
24	Enhancement of Microbubble Mediated Gene Delivery by Simultaneous Exposure to Ultrasonic and Magnetic Fields. Ultrasound in Medicine and Biology, 2009, 35, 861-868.	1.5	94
25	Gemcitabine loaded microbubbles for targeted chemo-sonodynamic therapy of pancreatic cancer. Journal of Controlled Release, 2018, 279, 8-16.	9.9	92
26	Nucleation, mapping and control ofÂcavitation for drug delivery. Nature Reviews Physics, 2019, 1, 495-509.	26.6	83
27	On the destruction of microbubble ultrasound contrast agents. Ultrasound in Medicine and Biology, 2003, 29, 563-573.	1.5	80
28	Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization. Medical Engineering and Physics, 2007, 29, 749-754.	1.7	79
29	Novel methods for preparing phospholipid coated microbubbles. European Biophysics Journal, 2008, 37, 515-520.	2.2	76
30	Microbubbling by co-axial electrohydrodynamic atomization. Medical and Biological Engineering and Computing, 2007, 45, 781-789.	2.8	75
31	Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization. Journal of the Royal Society Interface, 2009, 6, 271-277.	3.4	75
32	The influence of surface adsorption on microbubble dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 2103-2115.	3.4	71
33	Preparation of Multilayered Polymeric Structures Using a Novel Fourâ€Needle Coaxial Electrohydrodynamic Device. Macromolecular Rapid Communications, 2014, 35, 618-623.	3.9	70
34	Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles. Physical Review E, 2015, 92, 023019.	2.1	70
35	Electrosprayed nanoparticle delivery system for controlled release. Materials Science and Engineering C, 2016, 66, 138-146.	7.3	70
36	Trapping and manipulation of microscopic bubbles with a scanning optical tweezer. Applied Physics Letters, 2006, 89, 081113.	3.3	69

#	Article	IF	CITATIONS
37	Dynamics of Bubble Formation in Highly Viscous Liquids. Langmuir, 2008, 24, 4388-4393.	3.5	69
38	Ultrasoundâ€Enhanced siRNA Delivery Using Magnetic Nanoparticleâ€Loaded Chitosanâ€Deoxycholic Acid Nanodroplets. Advanced Healthcare Materials, 2017, 6, 1601246.	7.6	69
39	Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. International Journal of Pharmaceutics, 2011, 412, 59-67.	5.2	66
40	Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opinion on Drug Delivery, 2014, 11, 187-209.	5.0	66
41	Direct Evidence of Multibubble Sonoluminescence Using Therapeutic Ultrasound and Microbubbles. ACS Applied Materials & Interfaces, 2019, 11, 19913-19919.	8.0	66
42	Novel preparation techniques for controlling microbubble uniformity: a comparison. Medical and Biological Engineering and Computing, 2009, 47, 883-892.	2.8	65
43	Preparation, Characterization, and Release of Amoxicillin from Electrospun Fibrous Wound Dressing Patches. Pharmaceutical Research, 2013, 30, 1926-1938.	3.5	64
44	Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1919-1929.	3.3	64
45	The natural frequencies of microbubble oscillation in elastic vessels. Journal of the Acoustical Society of America, 2009, 126, 2963-2972.	1.1	62
46	Investigating the significance of multiple scattering in ultrasound contrast agent particle populations. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 2332-2345.	3.0	60
47	Temperature Dependent Behavior of Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2010, 36, 925-934.	1.5	60
48	Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization. Journal of the Royal Society Interface, 2010, 7, S451-60.	3.4	60
49	Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications. Materials Science and Engineering C, 2013, 33, 213-223.	7.3	59
50	Ultrasound-activated microbubbles as a novel intracellular drug delivery system for urinary tract infection. Journal of Controlled Release, 2019, 301, 166-175.	9.9	59
51	Preparation of solid lipid nanoparticles containing active compound by electrohydrodynamic spraying. Food Research International, 2013, 53, 88-95.	6.2	58
52	Increasing the nonlinear character of microbubble oscillations at low acoustic pressures. Journal of the Royal Society Interface, 2008, 5, 807-811.	3.4	57
53	Magnetic targeting and ultrasound mediated drug delivery: Benefits, limitations and combination. International Journal of Hyperthermia, 2012, 28, 362-373.	2.5	55
54	How Do Microbubbles and Ultrasound Interact? Basic Physical, Dynamic and Engineering Principles. Current Pharmaceutical Design, 2012, 18, 2118-2134.	1.9	54

#	Article	IF	CITATIONS
55	Performance of novel high throughput multi electrospray systems for forming of polymeric micro/nanoparticles. Materials and Design, 2017, 126, 73-84.	7.0	54
56	Electroformation of Giant Unilamellar Vesicles on Stainless Steel Electrodes. ACS Omega, 2017, 2, 994-1002.	3.5	53
57	Release profile and characteristics of electrosprayed particles for oral delivery of a practically insoluble drug. Journal of the Royal Society Interface, 2012, 9, 2437-2449.	3.4	52
58	Reducing Tumour Hypoxia via Oral Administration of Oxygen Nanobubbles. PLoS ONE, 2016, 11, e0168088.	2.5	52
59	Physical phenomena affecting quantitative imaging of ultrasound contrast agents. Applied Acoustics, 2009, 70, 1352-1362.	3.3	51
60	Particle formation and characteristics of Celecoxib-loaded poly(lactic-co-glycolic acid) microparticles prepared in different solvents using electrospraying. Polymer, 2012, 53, 3220-3229.	3.8	49
61	Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing. Lab on A Chip, 2014, 14, 2437-2446.	6.0	49
62	The effect of surfactant type and concentration on the size and stability of microbubbles produced in a capillary embedded T-junction device. RSC Advances, 2015, 5, 10751-10762.	3.6	49
63	Electrospraying and Electrospinning of Chocolate Suspensions. Food and Bioprocess Technology, 2012, 5, 2285-2300.	4.7	48
64	Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 232-251.	3.0	48
65	Magnetically responsive microbubbles as delivery vehicles for targeted sonodynamic and antimetabolite therapy of pancreatic cancer. Journal of Controlled Release, 2017, 262, 192-200.	9.9	47
66	Preparation of Polymeric Carriers for Drug Delivery with Different Shape and Size Using an Electric Jet. Current Pharmaceutical Biotechnology, 2009, 10, 600-608.	1.6	45
67	<i>In vitro</i> methods to study bubble-cell interactions: Fundamentals and therapeutic applications. Biomicrofluidics, 2016, 10, 011501.	2.4	45
68	Novel electrohydrodynamic preparation of porous chitosan particles for drug delivery. Journal of Materials Science: Materials in Medicine, 2009, 20, 917-923.	3.6	44
69	Size mapping of electric field-assisted production of polycaprolactone particles. Journal of the Royal Society Interface, 2010, 7, S393-402.	3.4	44
70	Modulation of the molecular arrangement in artificial and biological membranes by phospholipid-shelled microbubbles. Biomaterials, 2017, 113, 105-117.	11.4	44
71	Continuous Generation of Ethyl Cellulose Drug Delivery Nanocarriers from Microbubbles. Pharmaceutical Research, 2013, 30, 225-237.	3.5	43
72	Halbach arrays consisting of cubic elements optimised for high field gradients in magnetic drug targeting applications. Physics in Medicine and Biology, 2015, 60, 8303-8327.	3.0	43

#	Article	IF	CITATIONS
73	Evaluation of Methods for Sizing and Counting of Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2012, 38, 834-845.	1.5	42
74	Effects of Gold Nanoparticles on the Stability of Microbubbles. Langmuir, 2012, 28, 13808-13815.	3.5	42
75	The potential for thermal damage posed by microbubble ultrasound contrast agents. Ultrasonics, 2004, 42, 907-913.	3.9	40
76	High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1333-1342.	3.0	40
77	Electrohydrodynamic fabrication of core–shell PLGA nanoparticles with controlled release of cisplatin for enhanced cancer treatment. International Journal of Nanomedicine, 2017, Volume 12, 3913-3926.	6.7	39
78	Electrohydrodynamic forming of porous ceramic capsules from a preceramic polymer. Materials Letters, 2009, 63, 483-485.	2.6	38
79	Dissolution of coated microbubbles: The effect of nanoparticles and surfactant concentration. Materials Science and Engineering C, 2012, 32, 2654-2658.	7.3	38
80	Microbubbles, Nanodroplets and Gas-Stabilizing Solid Particles for Ultrasound-Mediated Extravasation of Unencapsulated Drugs: An Exposure Parameter Optimization Study. Ultrasound in Medicine and Biology, 2019, 45, 954-967.	1.5	38
81	Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic-acoustic device. Journal of Controlled Release, 2020, 317, 23-33.	9.9	38
82	Application of Electrohydrodynamic Technology for Folic Acid Encapsulation. Food and Bioprocess Technology, 2013, 6, 1837-1846.	4.7	37
83	A versatile method for the preparation of particle-loaded microbubbles for multimodality imaging and targeted drug delivery. Drug Delivery and Translational Research, 2018, 8, 342-356.	5.8	37
84	Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique. Biomedical Microdevices, 2016, 18, 4.	2.8	36
85	Casâ€Stabilizing Gold Nanocones for Acoustically Mediated Drug Delivery. Advanced Healthcare Materials, 2018, 7, e1800184.	7.6	36
86	Theoretical and experimental investigation of the behaviour of ultrasound contrast agent particles in whole blood. Ultrasound in Medicine and Biology, 2004, 30, 1495-1509.	1.5	35
87	Engineering a material for biomedical applications with electric field assisted processing. Applied Physics A: Materials Science and Processing, 2009, 97, 31-37.	2.3	35
88	Electrohydrodynamic Bubbling: An Alternative Route to Fabricate Porous Structures of Silk Fibroin Based Materials. Biomacromolecules, 2013, 14, 1412-1422.	5.4	35
89	Probing supramolecular protein assembly using covalently attached fluorescent molecular rotors. Biomaterials, 2017, 139, 195-201.	11.4	35
90	Fabrication of Biomaterials via Controlled Protein Bubble Generation and Manipulation. Biomacromolecules, 2011, 12, 4291-4300.	5.4	34

#	Article	IF	CITATIONS
91	Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T-junction device. Microfluidics and Nanofluidics, 2013, 14, 797-808.	2.2	34
92	A novel process for drug encapsulation using a liquid to vapour phase change material. Soft Matter, 2009, 5, 5029.	2.7	33
93	Novel preparation of transdermal drug-delivery patches and functional wound healing materials. Journal of Drug Targeting, 2009, 17, 724-729.	4.4	33
94	Electrosprayed core–shell polymer–lipid nanoparticles for active component delivery. Nanotechnology, 2013, 24, 465604.	2.6	33
95	Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles InÂVivo. Ultrasound in Medicine and Biology, 2016, 42, 3022-3036.	1.5	33
96	Preparation of Polymeric and Ceramic Porous Capsules by a Novel Electrohydrodynamic Process. Pharmaceutical Development and Technology, 2008, 13, 425-432.	2.4	32
97	Generation of microbubbles for diagnostic and therapeutic applications using a novel device. Journal of Drug Targeting, 2008, 16, 494-501.	4.4	32
98	Theoretical and Experimental Characterisation of Magnetic Microbubbles. Ultrasound in Medicine and Biology, 2012, 38, 864-875.	1.5	32
99	Preparation of multicompartment sub-micron particles using a triple-needle electrohydrodynamic device. Journal of Colloid and Interface Science, 2013, 409, 245-254.	9.4	32
100	Preparation, characterization and release kinetics of ethylcellulose nanoparticles encapsulating ethylvanillin as a model functional component. Journal of Functional Foods, 2015, 14, 726-735.	3.4	32
101	Sonoprinting liposomes on tumor spheroids by microbubbles and ultrasound. Journal of Controlled Release, 2019, 316, 79-92.	9.9	32
102	Optimized shapes of magnetic arrays for drug targeting applications. Journal Physics D: Applied Physics, 2016, 49, 225501.	2.8	31
103	Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays. Physics in Medicine and Biology, 2017, 62, 2333-2360.	3.0	31
104	Magnetic targeting of microbubbles against physiologically relevant flow conditions. Interface Focus, 2015, 5, 20150001.	3.0	30
105	Sonothrombolysis with Magnetically Targeted Microbubbles. Ultrasound in Medicine and Biology, 2019, 45, 1151-1163.	1.5	30
106	Biologically and Acoustically Compatible Chamber for Studying Ultrasound-Mediated Delivery of Therapeutic Compounds. Ultrasound in Medicine and Biology, 2015, 41, 1927-1937.	1.5	29
107	Pharmaceutical microparticle engineering with electrospraying: the role of mixed solvent systems in particle formation and characteristics. Journal of Materials Science: Materials in Medicine, 2015, 26, 61.	3.6	29
108	<i>ln Vitro</i> Method to Characterize Diffusion of Dye from Polymeric Particles: A Model for Drug Release. Langmuir, 2009, 25, 10007-10013.	3.5	27

#	Article	IF	CITATIONS
109	Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization. Physics in Medicine and Biology, 2015, 60, 785-806.	3.0	27
110	Novel co-axial electrohydrodynamic <i>in-situ</i> preparation of liquid-filled polymer-shell microspheres for biomedical applications. Journal of Microencapsulation, 2008, 25, 241-247.	2.8	26
111	Temperature-Dependent Differences in the Nonlinear Acoustic Behavior of Ultrasound Contrast Agents Revealed by High-Speed Imaging and Bulk Acoustics. Ultrasound in Medicine and Biology, 2011, 37, 1509-1517.	1.5	26
112	The Influence of Gas Saturation on Microbubble Stability. Ultrasound in Medicine and Biology, 2012, 38, 1097-1100.	1.5	26
113	Physical Principles of Microbubbles for Ultrasound Imaging and Therapy. Frontiers of Neurology and Neuroscience, 2015, 36, 11-22.	2.8	26
114	Ultrahigh-Speed Dynamics of Micrometer-Scale Inertial Cavitation from Nanoparticles. Physical Review Applied, 2016, 6, .	3.8	26
115	Novel preparation and characterization of porous alginate films. Carbohydrate Polymers, 2010, 79, 989-997.	10.2	25
116	Evaluation of microbubble contrast agents for dynamic imaging with x-ray phase contrast. Scientific Reports, 2015, 5, 12509.	3.3	25
117	Sonodynamic therapy complements PD-L1 immune checkpoint inhibition in a murine model of pancreatic cancer. Cancer Letters, 2021, 517, 88-95.	7.2	25
118	Accounting for the stability of microbubbles to multi-pulse excitation using a lipid-shedding model. Journal of the Acoustical Society of America, 2011, 130, EL180-EL185.	1.1	24
119	Encapsulation of superparamagnetic iron oxide nanoparticles in poly-(lactide-co-glycolic acid) microspheres for biomedical applications. Materials Science and Engineering C, 2013, 33, 3129-3137.	7.3	24
120	The "quasi-stable―lipid shelled microbubble in response to consecutive ultrasound pulses. Applied Physics Letters, 2012, 101, 071601.	3.3	23
121	Spectral imaging toolbox: segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order. BMC Bioinformatics, 2017, 18, 254.	2.6	23
122	Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10–200. Journal of Polymer Research, 2011, 18, 2515-2522.	2.4	22
123	A portable device for in situ deposition of bioproducts. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 94-105.	0.9	22
124	Technique for the Characterization of Phospholipid Microbubbles Coatings by Transmission Electron Microscopy. Ultrasound in Medicine and Biology, 2015, 41, 3253-3258.	1.5	22
125	Comparing Strategies for Magnetic Functionalization of Microbubbles. ACS Applied Materials & Interfaces, 2019, 11, 1829-1840.	8.0	22
126	Calcium Alginate Foams Prepared by a Microfluidic T-Junction System: Stability and Food Applications. Food and Bioprocess Technology, 2012, 5, 2848-2857.	4.7	21

#	Article	IF	CITATIONS
127	Quantification of microbubble concentration through x-ray phase contrast imaging. Applied Physics Letters, 2013, 103, 114105.	3.3	21
128	Microfluidic system for high throughput characterisation of echogenic particles. Lab on A Chip, 2015, 15, 417-428.	6.0	21
129	Investigation of the Acoustic Vaporization Threshold of Lipid-Coated Perfluorobutane Nanodroplets Using Both High-Speed Optical Imaging and Acoustic Methods. Ultrasound in Medicine and Biology, 2021, 47, 1826-1843.	1.5	21
130	Combining sonodynamic therapy with chemoradiation for the treatment of pancreatic cancer. Journal of Controlled Release, 2021, 337, 371-377.	9.9	21
131	Stability of microbubbles prepared by co-axial electrohydrodynamic atomisation. European Biophysics Journal, 2009, 38, 713-718.	2.2	20
132	Special issue on microbubbles: from contrast enhancement to cancer therapy. Medical and Biological Engineering and Computing, 2009, 47, 809-811.	2.8	19
133	Electrospinning of ethyl cellulose fibres with glass and steel needle configurations. Food Research International, 2013, 54, 1761-1772.	6.2	19
134	The Role of PEG-40-stearate in the Production, Morphology, and Stability of Microbubbles. Langmuir, 2019, 35, 10014-10024.	3.5	19
135	Neuroinflammation associated with ultrasound-mediated permeabilization of the blood–brain barrier. Trends in Neurosciences, 2022, 45, 459-470.	8.6	19
136	Understanding the Structure and Mechanism of Formation of a New Magnetic Microbubble Formulation. Theranostics, 2012, 2, 1127-1139.	10.0	18
137	Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects. Biomicrofluidics, 2018, 12, 034109.	2.4	18
138	Electrohydrodynamic preparation of polymeric drug-carrier particles: Mapping of the process. International Journal of Pharmaceutics, 2011, 404, 110-115.	5.2	17
139	Novel preparation of controlled porosity particle/fibre loaded scaffolds using a hybrid micro-fluidic and electrohydrodynamic technique. Biofabrication, 2014, 6, 045010.	7.1	17
140	Scaleable production of microbubbles using an ultrasound-modulated microfluidic device. Journal of the Acoustical Society of America, 2021, 150, 1577-1589.	1.1	17
141	Microbubble Destruction During Intravenous Administration: A Preliminary Study. Ultrasound in Medicine and Biology, 2009, 35, 515-522.	1.5	16
142	Effect of bubble shell nonlinearity on ultrasound nonlinear propagation through microbubble populations. Journal of the Acoustical Society of America, 2011, 129, EL76-EL82.	1.1	16
143	Magnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation. Physics in Medicine and Biology, 2017, 62, 7451-7470.	3.0	16
144	An encapsulated drug delivery system for recalcitrant urinary tract infection. Journal of the Royal Society Interface, 2013, 10, 20130747.	3.4	15

#	Article	IF	CITATIONS
145	Stimulus-responsive liquids for encapsulation storage and controlled release of drugs from nano-shell capsules. Journal of the Royal Society Interface, 2011, 8, 451-456.	3.4	14
146	Hot electrospinning of polyurethane fibres. Materials Letters, 2012, 68, 482-485.	2.6	14
147	Surfactant shedding and gas diffusion during pulsed ultrasound through a microbubble contrast agent suspension. Journal of the Acoustical Society of America, 2013, 134, 1416-1427.	1.1	14
148	The effect of particle density on ultrasound-mediated transport of nanoparticles. Physics in Medicine and Biology, 2016, 61, 7906-7918.	3.0	14
149	Enhanced efficacy in drug-resistant cancer cells through synergistic nanoparticle mediated delivery of cisplatin and decitabine. Nanoscale Advances, 2020, 2, 1177-1186.	4.6	14
150	Bioinspired bubble design for particle generation. Journal of the Royal Society Interface, 2012, 9, 389-395.	3.4	13
151	The influence of blood on targeted microbubbles. Journal of the Royal Society Interface, 2014, 11, 20140622.	3.4	13
152	Tailoring the size of ultrasound responsive lipid-shelled nanodroplets by varying production parameters and environmental conditions. Ultrasonics Sonochemistry, 2021, 73, 105482.	8.2	13
153	Forming of Protein Bubbles and Porous Films Using Coâ€Axial Electrohydrodynamic Flow Processing. Macromolecular Materials and Engineering, 2011, 296, 8-13.	3.6	12
154	Ultrasound mediated release from stimuli-responsive core–shell capsules. Journal of Materials Chemistry B, 2013, 1, 3962.	5.8	12
155	Experimental observations of the behaviour of a bubble inside a circular rigid tube. International Journal of Multiphase Flow, 2019, 121, 103096.	3.4	12
156	Novel antibiotic-loaded particles conferring eradication of deep tissue bacterial reservoirs for the treatment of chronic urinary tract infection. Journal of Controlled Release, 2020, 328, 490-502.	9.9	12
157	Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles. Langmuir, 2020, 36, 6388-6398.	3.5	12
158	An approximate nonlinear model for time gain compensation of amplitude modulated images of ultrasound contrast agent perfusion. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 818-829.	3.0	11
159	The acoustic signature of decaying resonant phospholipid microbubbles. Physics in Medicine and Biology, 2013, 58, 589-599.	3.0	11
160	Quantification of cell-bubble interactions in a 3D engineered tissue phantom. Scientific Reports, 2017, 7, 6331.	3.3	11
161	Ultrasoundâ€Triggered Delivery of Iproplatin from Microbubbleâ€Conjugated Liposomes. ChemistryOpen, 2021, 10, 1170-1176.	1.9	11
162	A device for the fabrication of multifunctional particles from microbubble suspensions. Materials Science and Engineering C, 2012, 32, 1005-1010.	7.3	10

#	Article	IF	CITATIONS
163	Microbubble-Mediated Delivery for Cancer Therapy. Fluids, 2018, 3, 74.	1.7	10
164	Controlling size and size distribution of electrohydrodynamically prepared microbubbles. Bubble Science, Engineering & Technology, 2009, 1, 53-57.	0.2	10
165	P1F-4 High Speed Optical Observations and Simulation Results of Lipid Based Microbubbles at Low Insonation Pressures. , 2006, , .		9
166	Nanoparticle Delivery Systems Formed Using Electrically Sprayed Co-Flowing Excipients and Active Agent. Journal of Biomedical Nanotechnology, 2011, 7, 782-793.	1.1	9
167	Forced vibrations of a bubble in a liquid-filled elastic vessel. Journal of the Acoustical Society of America, 2011, 130, 2700-2708.	1.1	9
168	A novel hybrid system for the fabrication of a fibrous mesh with micro-inclusions. Carbohydrate Polymers, 2012, 89, 222-229.	10.2	9
169	Investigating the Role of Lipid Transfer in Microbubble-Mediated Drug Delivery. Langmuir, 2019, 35, 13205-13215.	3.5	9
170	Orally administered oxygen nanobubbles enhance tumor response to sonodynamic therapy. Nano Select, 2022, 3, 394-401.	3.7	9
171	Beyond automatic medical image segmentation—the spectrum between fully manual and fully automatic delineation. Physics in Medicine and Biology, 2022, 67, 12TR01.	3.0	9
172	Ultrasound elastography to determine the layered mechanical properties of articular cartilage and the importance of such structural characteristics under load. , 2009, 2009, 4262-5.		8
173	Enhanced gene transfection in vivo using magnetic localisation of ultrasound contrast agents: Preliminary results. , 2010, , .		8
174	A theoretical investigation of photoacoustic contrast agents. Journal of the Acoustical Society of America, 2013, 133, 3853-3862.	1.1	8
175	Manufacturing Man-Made Magnetosomes: High-Throughput In Situ Synthesis of Biomimetic Magnetite Loaded Nanovesicles. Macromolecular Bioscience, 2016, 16, 1555-1561.	4.1	8
176	Microbubbles Containing Lysolipid Enhance Ultrasoundâ€Mediated Blood–Brain Barrier Breakdown In Vivo. Advanced Healthcare Materials, 2021, 10, e2001343.	7.6	8
177	Ultrasound-Mediated Gemcitabine Delivery Reduces the Normal-Tissue Toxicity of Chemoradiation Therapy in a Muscle-Invasive Bladder Cancer Model. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1472-1482.	0.8	8
178	Laser-driven resonance of dye-doped oil-coated microbubbles: A theoretical and numerical study. Journal of the Acoustical Society of America, 2017, 141, 2727-2745.	1.1	7
179	Bactericidal Effect of Ultrasound-Responsive Microbubbles and Sub-inhibitory Gentamicin against Pseudomonas aeruginosa Biofilms on Substrates With Differing Acoustic Impedance. Ultrasound in Medicine and Biology, 2022, 48, 1888-1898.	1.5	7
180	Controlled preparation of drug-exchange phase loaded polymeric fibres. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 48-56.	0.9	6

#	Article	IF	CITATIONS
181	Modification of the release characteristics of estradiol encapsulated in PLGA particles via surface coating. Therapeutic Delivery, 2012, 3, 209-226.	2.2	6
182	Electrohydrodynamic printing of silk fibroin. Macromolecular Research, 2013, 21, 339-342.	2.4	6
183	Novel electrically driven direct-writing methods with managed control on in-situ shape and encapsulation polymer forming. International Journal of Material Forming, 2013, 6, 281-288.	2.0	6
184	Light propagation in a turbid medium with insonified microbubbles. Journal of Biomedical Optics, 2013, 18, 015002.	2.6	6
185	Ultrasound-stimulated drug release from polymer micro and nanoparticles. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 3-10.	0.9	6
186	Laser-driven resonance of dye-doped oil-coated microbubbles: Experimental study. Journal of the Acoustical Society of America, 2017, 141, 4832-4846.	1.1	6
187	Mouse Models of Muscle-invasive Bladder Cancer: Key Considerations for Clinical Translation Based on Molecular Subtypes. European Urology Oncology, 2019, 2, 239-247.	5.4	6
188	Creating Supported Plasma Membrane Bilayers Using Acoustic Pressure. Membranes, 2020, 10, 30.	3.0	6
189	Spectral Imaging for Microbubble Characterization. Langmuir, 2020, 36, 609-617.	3.5	6
190	In situ evaluation of spatiotemporal distribution of doxorubicin from Drug-eluting Beads in a tissue mimicking phantom. European Journal of Pharmaceutical Sciences, 2021, 160, 105772.	4.0	6
191	A General Model to Calculate the Spin–Lattice Relaxation Rate (<scp>R1</scp>) of Blood, Accounting for Hematocrit, Oxygen Saturation, Oxygen Partial Pressure, and Magnetic Field Strength Under Hyperoxic Conditions. Journal of Magnetic Resonance Imaging, 2022, 55, 1428-1439.	3.4	6
192	A simplified empirical model to estimate oxygen relaxivity at different magnetic fields. NMR in Biomedicine, 2022, 35, e4625.	2.8	6
193	The effect of needle tip displacement in co-axial electrohydrodynamic processing. RSC Advances, 2016, 6, 75258-75268.	3.6	5
194	Analysis of the Uncertainty in Microbubble Characterization. Ultrasound in Medicine and Biology, 2016, 42, 1412-1418.	1.5	5
195	A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery. Review of Scientific Instruments, 2017, 88, 034302.	1.3	5
196	P4D-7 Nonlinear Propagation of Ultrasound Through Microbubble Clouds: A Novel Numerical Implementation. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	4
197	A combined three-dimensional in vitro–in silico approach to modelling bubble dynamics in decompression sickness. Journal of the Royal Society Interface, 2017, 14, 20170653.	3.4	4
198	A Combined Magneticâ€Acoustic Device for Simultaneous, Coaligned Application of Magnetic and Ultrasonic Fields. Advanced Materials Technologies, 2018, 3, 1800081.	5.8	4

#	Article	IF	Citations
199	Evaluation of Loading Strategies to Improve Tumor Uptake of Gemcitabine in a Murine Orthotopic Bladder Cancer Model Using Ultrasound and Microbubbles. Ultrasound in Medicine and Biology, 2021, 47, 1596-1615.	1.5	4
200	Experimental characterisation of holographic optical traps for microbubbles. , 2014, , .		3
201	Studying Cavitation Enhanced Therapy. Journal of Visualized Experiments, 2021, , .	0.3	3
202	Characterization and Design of Microbubble-Based Contrast Agents Suitable for Diagnostic Imaging. , 2005, , 31-42.		2
203	Improved Functionality of the Online 2009 Subject Index. Ultrasound in Medicine and Biology, 2010, 36, 1.	1.5	2
204	FABRICATION OF NANOPOROUS CHITOSAN MEMBRANES. Nano, 2010, 05, 53-60.	1.0	2
205	Monte Carlo simulations of acousto-optics with microbubbles. , 2010, , .		2
206	Nano-organized shells and their application in controlled release. Therapeutic Delivery, 2011, 2, 1247-1257.	2.2	2
207	Microbubble enhancement of ultrasound-modulated optical sensing with incoherent light. Proceedings of SPIE, 2011, , .	0.8	2
208	An algorithm for sensing venous oxygenation using ultrasound-modulated light enhanced by microbubbles. , 2012, , .		2
209	Modeling the Effect of Hyperoxia on the Spin–Lattice Relaxation Rate <scp>R1</scp> of Tissues. Magnetic Resonance in Medicine, 2022, 88, 1867-1885.	3.0	2
210	Temperature behaviour of ultrasound contrast agents. , 2009, , .		1
211	The effects of nonlinear wave propagation on the stability of inertial cavitation. Journal of Physics: Conference Series, 2009, 195, 012008.	0.4	1
212	Scaling the heights—challenges in medical materials. Journal of the Royal Society Interface, 2010, 7, S377-8.	3.4	1
213	Investigating the acoustic response of gold nanoparticle coated microbubbles. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
214	Passive acoustic mapping of magnetic microbubbles in an in vitro flow model. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
215	Microscale Acoustofluidics. Ultrasound in Medicine and Biology, 2015, 41, 2783.	1.5	1
216	Macromol. Biosci. 11/2016. Macromolecular Bioscience, 2016, 16, 1736-1736.	4.1	1

#	Article	IF	CITATIONS
217	Ultrasound propagation through dilute polydisperse microbubble suspensions. Journal of the Acoustical Society of America, 2017, 142, 1236-1248.	1.1	1
218	Magnetic resonance imaging of oxygen microbubbles. Healthcare Technology Letters, 2019, 6, 138-142.	3.3	1
219	Development of a CMUT model for non-linear actuation and contact dynamics. , 2019, , .		1
220	Investigating the Effect of Encapsulation Processing Parameters on the Viability of Therapeutic Viruses in Electrospraying. Pharmaceutics, 2020, 12, 388.	4.5	1
221	Determination of oxygen relaxivity in oxygen nanobubbles at 3 and 7ÂTesla. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2022, , 1.	2.0	1
222	A Hand-Held Magnetic Acoustic Device With Integrated Real-Time Monitoring for Targeted Drug Delivery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2462-2473.	3.0	1
223	Investigating the potential for thermal damage posed by microbubble ultrasound contrast agents: experimental results. , 0, , .		Ο
224	Characterisation and Design of Microbubble Ultrasound Contrast Agents. Academic Radiology, 2005, 12, S67-S68.	2.5	0
225	Dynamic Interactions between Contrast Agent Microbubbles: High Speed Camera Observations and Simulation Results. AIP Conference Proceedings, 2007, , .	0.4	Ο
226	New Format for the Ultrasound in Medicine and Biology Subject Index. Ultrasound in Medicine and Biology, 2007, 33, 1997.	1.5	0
227	Quasi-static elastography comparison of hyaline cartilage structures. Journal of Physics: Conference Series, 2009, 195, 012004.	0.4	Ο
228	Scaling the heights—challenges in medical materials. Journal of the Royal Society Interface, 2010, 7, S501-2.	3.4	0
229	Nonlinear dynamics of polymer shell ultrasound contrast agents at 8–32 MHz ultrasonic excitations. , 2013, , .		Ο
230	The effect of surfactant shedding and gas diffusion on pressure wave propagation through an ultrasound contrast agent suspension. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
231	Feasibility Study of Non-invasive Oxygenation Measurement in a Deep Blood Vessel Using Acousto-Optics and Microbubbles. Advances in Experimental Medicine and Biology, 2012, 737, 277-283.	1.6	Ο
232	Magnetic Microbubbles. , 2012, , 499-522.		0
233	Investigating the effect of fabrication method on the stability and acoustic response of microbubble agents. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
234	Investigating the sensitivity of microbubble acoustic response for biosensing applications. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0

#	Article	IF	CITATIONS
235	Characterisation of Functionalised Microbubbles for Ultrasound Imaging and Therapy. , 2018, , 375-389.		Ο
236	Development of a Nanodroplet Formulation for Triggered Release of BIO for Bone Fracture Healing. Proceedings (mdpi), 2020, 78, .	0.2	0