
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8794122/publications.pdf Version: 2024-02-01

LVNN SOONC

#	Article	IF	CITATIONS
1	ILâ€33 activates mTORC1 and modulates glycolytic metabolism in CD8 ⁺ T cells. Immunology, 2022, 165, 61-73.	2.0	20
2	The Protective Role of IL-36/IL-36R Signal in Con A–Induced Acute Hepatitis. Journal of Immunology, 2022, 208, 861-869.	0.4	4
3	Atomic Structure of the Leishmania spp . Hsp100 Nâ€Domain. Proteins: Structure, Function and Bioinformatics, 2022, , .	1.5	1
4	Distinct Role of TNFR1 and TNFR2 in Protective Immunity Against Orientia tsutsugamushi Infection in Mice. Frontiers in Immunology, 2022, 13, 867924.	2.2	9
5	Protective Immunity and Immunopathology in Ehrlichiosis. Zoonoses, 2022, 2, .	0.5	5
6	Lycium barbarum polysaccharides inhibit ischemia/reperfusion-induced myocardial injury via the Nrf2 antioxidant pathway. Toxicology Reports, 2021, 8, 657-667.	1.6	15
7	Metformin Modulates T Cell Function and Alleviates Liver Injury Through Bioenergetic Regulation in Viral Hepatitis. Frontiers in Immunology, 2021, 12, 638575.	2.2	9
8	Orientia tsutsugamushi selectively stimulates the C-type lectin receptor Mincle and type 1-skewed proinflammatory immune responses. PLoS Pathogens, 2021, 17, e1009782.	2.1	15
9	Type I Interferon Promotes Humoral Immunity in Viral Vector Vaccination. Journal of Virology, 2021, 95, e0092521.	1.5	9
10	Pattern Recognition Receptors in Innate Immunity to Obligate Intracellular Bacteria. Zoonoses, 2021, 1,	0.5	7
11	Intracellular receptor EPAC regulates von Willebrand factor secretion from endothelial cells in a PI3K-/eNOS-dependent manner during inflammation. Journal of Biological Chemistry, 2021, 297, 101315.	1.6	5
12	Mucosal vaccination induces protection against SARS-CoV-2 in the absence of detectable neutralizing antibodies. Npj Vaccines, 2021, 6, 139.	2.9	8
13	Histone Deacetylase Isoforms Differentially Modulate Inflammatory and Autoantibody Responses in a Mouse Model of Myasthenia Gravis. Frontiers in Neurology, 2021, 12, 804113.	1.1	3
14	Annexin A2 depletion exacerbates the intracerebral microhemorrhage induced by acute rickettsia and Ebola virus infections. PLoS Neglected Tropical Diseases, 2020, 14, e0007960.	1.3	9
15	Role of central nervous system in the progression of preeclampsia. Journal of Molecular and Cellular Cardiology, 2020, 140, 59.	0.9	0
16	IL-22 hinders antiviral T cell responses and exacerbates ZIKV encephalitis in immunocompetent neonatal mice. Journal of Neuroinflammation, 2020, 17, 249.	3.1	5
17	Epigenetic Suppression of HIV in Myeloid Cells by the BRD4-Selective Small Molecule Modulator ZL0580. Journal of Virology, 2020, 94, .	1.5	20
18	Polarized lung inflammation and Tie2/angiopoietin-mediated endothelial dysfunction during severe Orientia tsutsugamushiÂinfection. PLoS Neglected Tropical Diseases, 2020, 14, e0007675.	1.3	22

#	Article	IF	CITATIONS
19	Hydrogenâ€rich water alleviates cyclosporine Aâ€induced nephrotoxicity via the Keap1/Nrf2 signaling pathway. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22467.	1.4	16
20	Retinoic Acid Modulates Hyperactive T Cell Responses and Protects Vitamin A–Deficient Mice against Persistent Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2020, 204, 2984-2994.	0.4	16
21	Neuroinflammation associated with scrub typhus and spotted fever group rickettsioses. PLoS Neglected Tropical Diseases, 2020, 14, e0008675.	1.3	18
22	FISH and Chromosome Microarray Testing of Gastroesophageal Adenocarcinomas at a Single Institution. , 2020, 3, 39-46.		0
23	Title is missing!. , 2020, 14, e0007675.		0
24	Title is missing!. , 2020, 14, e0007675.		0
25	Title is missing!. , 2020, 14, e0007675.		0
26	Title is missing!. , 2020, 14, e0007675.		0
27	Scrub Typhus Pathogenesis: Innate Immune Response and Lung Injury During Orientia tsutsugamushi Infection. Frontiers in Microbiology, 2019, 10, 2065.	1.5	31
28	CD4+ T Cell-Dependent Macrophage Activation Modulates Sustained PS Exposure on Intracellular Amastigotes of Leishmania amazonensis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 105.	1.8	9
29	Immunotherapy using anti-PD-1 and anti-PD-L1 in Leishmania amazonensis-infected BALB/c mice reduce parasite load. Scientific Reports, 2019, 9, 20275.	1.6	27
30	IL-33 induces immunosuppressive neutrophils via a type 2 innate lymphoid cell/IL-13/STAT6 axis and protects the liver against injury in LCMV infection-induced viral hepatitis. Cellular and Molecular Immunology, 2019, 16, 126-137.	4.8	32
31	Dysregulated Th1 Immune and Vascular Responses in Scrub Typhus Pathogenesis. Journal of Immunology, 2018, 200, 1233-1240.	0.4	30
32	Developmental Defects Associated With DNA Copy Number Gain of Chromosome 2q33.1: A Case Report and Review of Literature. Laboratory Medicine, 2018, 49, 160-164.	0.8	0
33	Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection. PLoS Pathogens, 2018, 14, e1006888.	2.1	26
34	Retinoic Acid Regulates Immune Responses by Promoting IL-22 and Modulating S100 Proteins in Viral Hepatitis. Journal of Immunology, 2017, 198, 3448-3460.	0.4	24
35	Priming and Activation of Inflammasome by Canarypox Virus Vector ALVAC via the cGAS/IFI16–STING–Type I IFN Pathway and AIM2 Sensor. Journal of Immunology, 2017, 199, 3293-3305.	0.4	33
36	Outcomes of Congenital Zika Disease Depend on Timing of Infection and Maternal-Fetal Interferon Action. Cell Reports, 2017, 21, 1588-1599.	2.9	83

#	Article	IF	CITATIONS
37	Viral Retinopathy in Experimental Models of Zika Infection. , 2017, 58, 4355.		50
38	CD8+ T cells provide immune protection against murine disseminated endotheliotropic Orientia tsutsugamushi infection. PLoS Neglected Tropical Diseases, 2017, 11, e0005763.	1.3	38
39	Type 1-skewed neuroinflammation and vascular damage associated with Orientia tsutsugamushi infection in mice. PLoS Neglected Tropical Diseases, 2017, 11, e0005765.	1.3	25
40	The burden of leishmaniasis in Iran, acquired from the global burden of disease during 1990–2010. Asian Pacific Journal of Tropical Disease, 2017, 7, 513-518.	0.5	13
41	Splenic CD4+ T Cells in Progressive Visceral Leishmaniasis Show a Mixed Effector-Regulatory Phenotype and Impair Macrophage Effector Function through Inhibitory Receptor Expression. PLoS ONE, 2017, 12, e0169496.	1.1	38
42	mTOR Mediates IL-23 Induction of Neutrophil IL-17 and IL-22 Production. Journal of Immunology, 2016, 196, 4390-4399.	0.4	85
43	IL-33-Dependent Endothelial Activation Contributes to Apoptosis and Renal Injury in Orientia tsutsugamushi-Infected Mice. PLoS Neglected Tropical Diseases, 2016, 10, e0004467.	1.3	44
44	An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection. PLoS Neglected Tropical Diseases, 2016, 10, e0004884.	1.3	34
45	The MET Receptor Tyrosine Kinase Confers Repair of Murine Pancreatic Acinar Cells following Acute and Chronic Injury. PLoS ONE, 2016, 11, e0165485.	1.1	2
46	Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection. PLoS Pathogens, 2016, 12, e1005663.	2.1	25
47	Permissive and protective roles for neutrophils in leishmaniasis. Clinical and Experimental Immunology, 2015, 182, 109-118.	1.1	72
48	ILâ€33 promotes innate IFNâ€ [‡] 3 production and modulates dendritic cell response in LCMVâ€induced hepatitis in mice. European Journal of Immunology, 2015, 45, 3052-3063.	1.6	40
49	Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression. Biochemical Journal, 2015, 465, 295-303.	1.7	38
50	Type 1 interferon-induced IL-7 maintains CD8+ T-cell responses and homeostasis by suppressing PD-1 expression in viral hepatitis. Cellular and Molecular Immunology, 2015, 12, 213-222.	4.8	23
51	Interactions between Neutrophils and <i>Leishmania braziliensis</i> Amastigotes Facilitate Cell Activation and Parasite Clearance. Journal of Innate Immunity, 2015, 7, 354-363.	1.8	39
52	The Co-Stimulatory Effects of MyD88-Dependent Toll-Like Receptor Signaling on Activation of Murine γδ T Cells. PLoS ONE, 2014, 9, e108156.	1.1	19
53	Leishmania amazonensis Amastigotes Highly Express a Tryparedoxin Peroxidase Isoform That Increases Parasite Resistance to Macrophage Antimicrobial Defenses and Fosters Parasite Virulence. PLoS Neglected Tropical Diseases, 2014, 8, e3000.	1.3	27
54	Strong Type 1, but Impaired Type 2, Immune Responses Contribute to Orientia tsutsugamushi-Induced Pathology in Mice. PLoS Neglected Tropical Diseases, 2014, 8, e3191.	1.3	56

#	Article	lF	CITATIONS
55	A Hematogenously Disseminated Orientia tsutsugamsushi-Infected Murine Model of Scrub Typhus. PLoS Neglected Tropical Diseases, 2014, 8, e2966.	1.3	50
56	Hepatocyte growth factor in dampening liver immuneâ€mediated pathology in acute viral hepatitis without compromising antiviral activity. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 878-886.	1.4	7
57	Downregulation of micro <scp>RNA</scp> â€107 in intestinal <scp>CD</scp> 11c ⁺ myeloid cells in response to microbiota and proinflammatory cytokines increases <scp>IL</scp> â€23p19 expression. European Journal of Immunology, 2014, 44, 673-682.	1.6	52
58	γδT Cells as a Major Source of IL-17 Production During Age-Dependent RPE Degeneration. , 2014, 55, 6580.		40
59	Intrahepatic Innate Lymphoid Cells Secrete IL-17A and IL-17F That Are Crucial for T Cell Priming in Viral Infection. Journal of Immunology, 2014, 192, 3289-3300.	0.4	40
60	A variant in the promoter of MBL2 is associated with protection against visceral leishmaniasis in Morocco. Infection, Genetics and Evolution, 2013, 13, 162-167.	1.0	12
61	Leishmania amazonensis Amastigotes Trigger Neutrophil Activation but Resist Neutrophil Microbicidal Mechanisms. Infection and Immunity, 2013, 81, 3966-3974.	1.0	55
62	Phosphatidylserine exposure on the surface of <i><scp>L</scp>eishmania amazonensis</i> amastigotes modulates <i>in vivo</i> infection and dendritic cell function. Parasite Immunology, 2013, 35, 109-119.	0.7	24
63	IL-33 Induces Nuocytes and Modulates Liver Injury in Viral Hepatitis. Journal of Immunology, 2013, 190, 5666-5675.	0.4	63
64	Early IL-17 Production by Intrahepatic T Cells Is Important for Adaptive Immune Responses in Viral Hepatitis. Journal of Immunology, 2013, 190, 621-629.	0.4	51
65	Immunomodulatory and Antibacterial Effects of Cystatin 9 against Francisella tularensis. Molecular Medicine, 2013, 19, 263-275.	1.9	11
66	Interferon Gamma in Leishmaniasis. Frontiers in Immunology, 2013, 4, 156.	2.2	93
67	Functional Interferon System Is Required for Clearance of Lassa Virus. Journal of Virology, 2012, 86, 3389-3392.	1.5	45
68	Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Seminars in Immunopathology, 2012, 34, 735-751.	2.8	102
69	Systemic Treatment with CpG-B after Sublethal Rickettsial Infection Induces Mouse Death through Indoleamine 2,3-Dioxygenase (IDO). PLoS ONE, 2012, 7, e34062.	1.1	17
70	Exposure of Phosphatidylserine on Leishmania amazonensis Isolates Is Associated with Diffuse Cutaneous Leishmaniasis and Parasite Infectivity. PLoS ONE, 2012, 7, e36595.	1.1	40
71	Subversion and Utilization of Host Innate Defense by Leishmania amazonensis. Frontiers in Immunology, 2012, 3, 58.	2.2	63
72	Parenchymal expression of CD40 exacerbates adenovirus-induced hepatitis in mice. Hepatology, 2011, 53, 1455-1467.	3.6	17

#	Article	IF	CITATIONS
73	IFN-Î \pm /Î 2 and autophagy. Autophagy, 2011, 7, 1394-1396.	4.3	18
74	Sphingolipid Degradation by Leishmania major Is Required for Its Resistance to Acidic pH in the Mammalian Host. Infection and Immunity, 2011, 79, 3377-3387.	1.0	25
75	Differential Microbicidal Effects of Human Histone Proteins H2A and H2B on <i>Leishmania</i> Promastigotes and Amastigotes. Infection and Immunity, 2011, 79, 1124-1133.	1.0	63
76	Aedes aegypti Saliva Alters Leukocyte Recruitment and Cytokine Signaling by Antigen-Presenting Cells during West Nile Virus Infection. PLoS ONE, 2010, 5, e11704.	1.1	86
77	CXCL10 Production by Human Monocytes in Response to <i>Leishmania braziliensis</i> Infection. Infection and Immunity, 2010, 78, 301-308.	1.0	68
78	Type I IFN Receptor Regulates Neutrophil Functions and Innate Immunity to <i>Leishmania</i> Parasites. Journal of Immunology, 2010, 184, 7047-7056.	0.4	98
79	Cooperation between Apoptotic and Viable Metacyclics Enhances the Pathogenesis of Leishmaniasis. PLoS ONE, 2009, 4, e5733.	1.1	77
80	Distinct Roles for MyD88 and Toll-Like Receptor 2 during <i>Leishmania braziliensis</i> Infection in Mice. Infection and Immunity, 2009, 77, 2948-2956.	1.0	92
81	Degradation of Host Sphingomyelin Is Essential for Leishmania Virulence. PLoS Pathogens, 2009, 5, e1000692.	2.1	64
82	L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunologic Research, 2008, 41, 15-25.	1.3	155
83	Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection. International Journal for Parasitology, 2008, 38, 417-429.	1.3	76
84	The C-terminal extension of Leishmania pifanoi amastigote-specific cysteine proteinase Lpcys2: A putative function in macrophage infection. Molecular and Biochemical Parasitology, 2008, 162, 52-59.	0.5	14
85	Down-regulation of dendritic cell signaling pathways by Leishmania amazonensis amastigotes. Molecular Immunology, 2008, 45, 3371-3382.	1.0	83
86	<i>Leishmania braziliensis</i> Infection Induces Dendritic Cell Activation, ISG15 Transcription, and the Generation of Protective Immune Responses. Journal of Immunology, 2008, 180, 7537-7545.	0.4	66
87	Effects of CXCL10 on Dendritic Cell and CD4 ⁺ T-Cell Functions during <i>Leishmania amazonensis</i> Infection. Infection and Immunity, 2008, 76, 161-169.	1.0	39
88	Modulation of Dendritic Cell Function by <i>Leishmania</i> Parasites. Journal of Immunology, 2008, 180, 4355-4360.	0.4	98
89	Role of Natural Killer Cells in Modulating Dendritic Cell Responses to <i>Leishmania amazonensis</i> Infection. Infection and Immunity, 2008, 76, 5100-5109.	1.0	34
90	Yellow fever virus infection in Syrian golden hamsters: relationship between cytokine expression and pathologic changes. International Journal of Clinical and Experimental Pathology, 2008, 1, 169-79.	0.5	17

#	Article	IF	CITATIONS
91	l -Arginine and Cationic Amino Acid Transporter 2B Regulate Growth and Survival of Leishmania amazonensis Amastigotes in Macrophages. Infection and Immunity, 2007, 75, 2802-2810.	1.0	62
92	Rickettsiae‣timulated Dendritic Cells Mediate Protection against Lethal Rickettsial Challenge in an Animal Model of Spotted Fever Rickettsiosis. Journal of Infectious Diseases, 2007, 196, 629-638.	1.9	39
93	Differential Interaction of Dendritic Cells with Rickettsia conorii : Impact on Host Susceptibility to Murine Spotted Fever Rickettsiosis. Infection and Immunity, 2007, 75, 3112-3123.	1.0	66
94	Role of Interleukin-1β in Activating the CD11c ^{high} CD45RB ^{â^'} Dendritic Cell Subset and Priming <i>Leishmania amazonensis</i> - Specific CD4 ⁺ T Cells In Vitro and In Vivo. Infection and Immunity, 2007, 75, 5018-5026.	1.0	66
95	Prior Exposure to Uninfected Mosquitoes Enhances Mortality in Naturally-Transmitted West Nile Virus Infection. PLoS ONE, 2007, 2, e1171.	1.1	70
96	Establishing a liquid-phase IEF in combination with 2-DE for the analysis ofLeishmania proteins. Proteomics, 2007, 7, 116-120.	1.3	24
97	Immunization of mice with T cell-dependent antigens promotes IL-6 and TNF-α production in muscle cells. Cytokine, 2006, 35, 100-106.	1.4	11
98	Comparative two-dimensional gel electrophoresis maps for promastigotes of Leishmania amazonensis and Leishmania major. Brazilian Journal of Infectious Diseases, 2006, 10, 1-6.	0.3	30
99	Leishmania species: Evidence for transglutaminase activity and its role in parasite proliferation. Experimental Parasitology, 2006, 114, 94-102.	0.5	6
100	CXCL10/Gamma Interferon-Inducible Protein 10-Mediated Protection against Leishmania amazonensis Infection in Mice. Infection and Immunity, 2006, 74, 6769-6777.	1.0	49
101	Outer Membrane Protein A of Escherichia coli O157:H7 Stimulates Dendritic Cell Activation. Infection and Immunity, 2006, 74, 2676-2685.	1.0	64
102	Potentiation of West Nile Encephalitis by Mosquito Feeding. Viral Immunology, 2006, 19, 74-82.	0.6	116
103	CD4+CD25+ Regulatory T Cells Restrain Pathogenic Responses during <i>Leishmania amazonensis</i> Infection. Journal of Immunology, 2005, 174, 7147-7153.	0.4	118
104	Overproduction of TNF-α by CD8+ Type 1 Cells and Down-Regulation of IFN-γ Production by CD4+ Th1 Cells Contribute to Toxic Shock-Like Syndrome in an Animal Model of Fatal Monocytotropic Ehrlichiosis. Journal of Immunology, 2004, 172, 1786-1800.	0.4	115
105	Identification and Molecular Characterization of a Gene Encoding a Protective Leishmania amazonensis Trp-Asp (WD) Protein. Infection and Immunity, 2004, 72, 2194-2202.	1.0	6
106	Enhanced Replication of Leishmania amazonensis Amastigotes in Gamma Interferon-Stimulated Murine Macrophages: Implications for the Pathogenesis of Cutaneous Leishmaniasis. Infection and Immunity, 2004, 72, 988-995.	1.0	92
107	Sand Fly Saliva Enhances Leishmania amazonensis Infection by Modulating Interleukin-10 Production. Infection and Immunity, 2004, 72, 1240-1247.	1.0	102
108	Aedes aegyptiSalivary Gland Extracts Modulate Anti-Viral and TH1/TH2 Cytokine Responses to Sindbis Virus Infection. Viral Immunology, 2004, 17, 565-573.	0.6	107

#	Article	IF	CITATIONS
109	Negative effect of antibodies against maxadilan on the fitness of the sand fly vector of American visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2004, 70, 278-85.	0.6	18
110	Antigenic diversity in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2004, 70, 286-93.	0.6	16
111	Differential requirement for CD18 in T-helper effector homing. Nature Medicine, 2003, 9, 1281-1286.	15.2	40
112	Perforin and Gamma Interferon Are Critical CD8 + T-Cell-Mediated Responses in Vaccine-Induced Immunity against Leishmania amazonensis Infection. Infection and Immunity, 2003, 71, 3172-3182.	1.0	78
113	Leishmania model for microbial virulence: the relevance of parasite multiplication and pathoantigenicity. Acta Tropica, 2003, 85, 375-390.	0.9	113
114	Differential Induction of Interleukin-10 and Interleukin-12 in Dendritic Cells by Microbial Toll-Like Receptor Activators and Skewing of T-Cell Cytokine Profiles. Infection and Immunity, 2003, 71, 3337-3342.	1.0	121
115	DNA Immunization with the Gene Encoding P4 Nuclease of Leishmania amazonensis Protects Mice against Cutaneous Leishmaniasis. Infection and Immunity, 2003, 71, 6270-6278.	1.0	60
116	Impaired Expression of Inflammatory Cytokines and Chemokines at Early Stages of Infection with Leishmania amazonensis. Infection and Immunity, 2003, 71, 4278-4288.	1.0	154
117	Analysis of T helper cell responses during infection with Leishmania amazonensis American Journal of Tropical Medicine and Hygiene, 2002, 66, 338-345.	0.6	84
118	Leishmania donovani: Expression and Characterization of Escherichia coli-Expressed Recombinant Chitinase LdCHT1. Experimental Parasitology, 2001, 99, 220-225.	0.5	6
119	Gender inequity: challenging business as usual. Nature Immunology, 2001, 2, 985-987.	7.0	6
120	Hepatitis C Virus Core and Envelope Proteins Do Not Suppress the Host's Ability To Clear a Hepatic Viral Infection. Journal of Virology, 2001, 75, 11992-11998.	1.5	28
121	<i>Leishmania amazonensis</i> -Dendritic Cell Interactions In Vitro and the Priming of Parasite-Specific CD4+ T Cells In Vivo. Journal of Immunology, 2001, 167, 4534-4542.	0.4	100
122	The Immunologically Protective P-4 Antigen ofLeishmania Amastigotes. Journal of Biological Chemistry, 2000, 275, 37789-37797.	1.6	35
123	<i>Leishmania pifanoi</i> Amastigote Antigen P-4: Epitopes Involved in T-Cell Responsiveness in Human Cutaneous Leishmaniasis. Infection and Immunity, 1998, 66, 3100-3105.	1.0	17
124	Disruption of CD40–CD40 Ligand Interactions Results in an Enhanced Susceptibility to Leishmania amazonensis Infection. Immunity, 1996, 4, 263-273.	6.6	302
125	Leishmania amazonensis:Cultivation and Characterization of Axenic Amastigote-like Organisms. Experimental Parasitology, 1996, 83, 94-105.	0.5	63
126	T-Cell Responsiveness of American Cutaneous Leishmaniasis Patients to PurifiedLeishmania pifanoiAmastigote Antigens andLeishmania braziliensisPromastigote Antigens: Immunologic Patterns Associated with Cure. Experimental Parasitology, 1996, 84, 144-155.	0.5	73

#	Article	IF	CITATIONS
127	Leishmania-infected macrophages sequester endogenously synthesized parasite antigens from presentation to CD4+ T cells. European Journal of Immunology, 1996, 26, 3163-3169.	1.6	74
128	Trypanosoma cruzi infection suppresses nuclear factors that bind to specific sites on the interleukin. European Journal of Immunology, 1994, 24, 16-23.	1.6	23