
## Pshtiwan Mohammed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/879353/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Hermiteâ€Hadamard inequalities in fractional calculus defined using Mittagâ€Leffler kernels.<br>Mathematical Methods in the Applied Sciences, 2021, 44, 8414-8431.                                            | 1.2 | 73        |
| 2  | On generalized fractional integral inequalities for twice differentiable convex functions. Journal of Computational and Applied Mathematics, 2020, 372, 112740.                                               | 1.1 | 69        |
| 3  | On the Generalized Hermite–Hadamard Inequalities via the Tempered Fractional Integrals. Symmetry,<br>2020, 12, 595.                                                                                           | 1.1 | 64        |
| 4  | A New Version of the Hermite–Hadamard Inequality for Riemann–Liouville Fractional Integrals.<br>Symmetry, 2020, 12, 610.                                                                                      | 1.1 | 60        |
| 5  | Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function. Open<br>Mathematics, 2020, 18, 794-806.                                                                          | 0.5 | 53        |
| 6  | Hermiteâ€Hadamard inequalities for Riemann‣iouville fractional integrals of a convex function with respect to a monotone function. Mathematical Methods in the Applied Sciences, 2021, 44, 2314-2324.         | 1.2 | 48        |
| 7  | New Hermite–Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities.<br>Symmetry, 2021, 13, 673.                                                                                 | 1.1 | 44        |
| 8  | Modification of certain fractional integral inequalities for convex functions. Advances in Difference<br>Equations, 2020, 2020, .                                                                             | 3.5 | 41        |
| 9  | Harmonically Convex Fuzzy-Interval-Valued Functions and Fuzzy-Interval Riemann–Liouville<br>Fractional Integral Inequalities. International Journal of Computational Intelligence Systems, 2021, 14,<br>1809. | 1.6 | 40        |
| 10 | Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Advances in Difference Equations, 2020, 2020, .                                       | 3.5 | 40        |
| 11 | Hermite–Hadamard type inequalities for F-convex function involving fractional integrals. Journal of<br>Inequalities and Applications, 2018, 2018, 359.                                                        | 0.5 | 36        |
| 12 | Midpoint Inequalities in Fractional Calculus Defined Using Positive Weighted Symmetry Function<br>Kernels. Symmetry, 2021, 13, 550.                                                                           | 1.1 | 33        |
| 13 | Generalized fractional integral inequalities of Hermite–Hadamard type for \${(alpha,m)}\$-convex<br>functions. Journal of Inequalities and Applications, 2019, 2019, .                                        | 0.5 | 32        |
| 14 | Some new Hermite-Hadamard type inequalities for MT -convex functions on differentiable coordinates. Journal of King Saud University - Science, 2018, 30, 258-262.                                             | 1.6 | 31        |
| 15 | Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions. Symmetry, 2020, 12, 1485.                                                                                              | 1.1 | 29        |
| 16 | Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Mathematical<br>Biosciences and Engineering, 2021, 18, 6552-6580.                                                       | 1.0 | 28        |
| 17 | Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of<br>Pseudo Order Relation. Axioms, 2021, 10, 175.                                                          | 0.9 | 27        |
| 18 | On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis.<br>Mathematics, 2021, 9, 1303.                                                                                           | 1.1 | 26        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hermite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral<br>Operators. International Journal of Computational Intelligence Systems, 2022, 15, 1.                  | 1.6 | 26        |
| 20 | New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo–Fabrizio Operator.<br>Fractal and Fractional, 2022, 6, 171.                                                                 | 1.6 | 26        |
| 21 | New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation.<br>AIMS Mathematics, 2021, 6, 10964-10988.                                                         | 0.7 | 25        |
| 22 | Fractional Hermite–Hadamard–Fejer Inequalities for a Convex Function with Respect to an Increasing<br>Function Involving a Positive Weighted Symmetric Function. Symmetry, 2020, 12, 1503.                 | 1.1 | 24        |
| 23 | Inequalities of trapezoidal type involving generalized fractional integrals. AEJ - Alexandria<br>Engineering Journal, 2020, 59, 2975-2984.                                                                 | 3.4 | 23        |
| 24 | Some weighted Simpson type inequalities for differentiable s–convex functions and their applications.<br>Journal of Fractional Calculus and Nonlinear Systems, 2020, 1, 75-94.                             | 0.7 | 23        |
| 25 | New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions.<br>Symmetry, 2019, 11, 263.                                                                                | 1.1 | 22        |
| 26 | Simpson's Integral Inequalities for Twice Differentiable Convex Functions. Mathematical Problems in<br>Engineering, 2020, 2020, 1-15.                                                                      | 0.6 | 22        |
| 27 | Adomian Decomposition and Fractional Power Series Solution of a Class of Nonlinear Fractional Differential Equations. Mathematics, 2021, 9, 1070.                                                          | 1.1 | 22        |
| 28 | New discrete inequalities of Hermite–Hadamard type for convex functions. Advances in Difference<br>Equations, 2021, 2021, .                                                                                | 3.5 | 21        |
| 29 | Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7, 4338-4358.                                                             | 0.7 | 21        |
| 30 | New Modified Conformable Fractional Integral Inequalities of Hermite–Hadamard Type with<br>Applications. Journal of Function Spaces, 2020, 2020, 1-14.                                                     | 0.4 | 20        |
| 31 | New integral inequalities for preinvex functions via generalized beta function. Journal of<br>Interdisciplinary Mathematics, 2019, 22, 539-549.                                                            | 0.4 | 19        |
| 32 | Existence and Uniqueness of Uncertain Fractional Backward Difference Equations of<br>Riemann–Liouville Type. Mathematical Problems in Engineering, 2020, 2020, 1-8.                                        | 0.6 | 19        |
| 33 | Discrete generalized fractional operators defined using hâ€discrete Mittagâ€Leffler kernels and<br>applications to AB fractional difference systems. Mathematical Methods in the Applied Sciences, 2020, , | 1.2 | 18        |
| 34 | New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions.<br>Journal of Inequalities and Applications, 2020, 2020, .                                                  | 0.5 | 18        |
| 35 | Some modifications in conformable fractional integral inequalities. Advances in Difference<br>Equations, 2020, 2020, .                                                                                     | 3.5 | 18        |
| 36 | On New Trapezoid Type Inequalities for <i>h</i> -convex Functions via Generalized Fractional<br>Integral. Turkish Journal of Analysis and Number Theory, 2018, 6, 125-128.                                 | 0.1 | 18        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Non-Conformable Fractional Laplace Transform. Kragujevac Journal of Mathematics, 2022, 46, 341-354.                                                                                        | 0.3 | 18        |
| 38 | Hermite–Hadamard integral inequalities on coordinated convex functions in quantum calculus.<br>Advances in Difference Equations, 2021, 2021, .                                             | 3.5 | 17        |
| 39 | Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators. Fractal and Fractional, 2021, 5, 160.                                                               | 1.6 | 17        |
| 40 | Numerical computations and theoretical investigations of a dynamical system with fractional order derivative. AEJ - Alexandria Engineering Journal, 2022, 61, 1982-1994.                   | 3.4 | 16        |
| 41 | On Discrete Delta Caputo–Fabrizio Fractional Operators and Monotonicity Analysis. Fractal and Fractional, 2021, 5, 116.                                                                    | 1.6 | 16        |
| 42 | Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations.<br>Journal of King Saud University - Science, 2021, 33, 101497.                         | 1.6 | 16        |
| 43 | Opial integral inequalities for generalized fractional operators with nonsingular kernel. Journal of<br>Inequalities and Applications, 2020, 2020, .                                       | 0.5 | 16        |
| 44 | Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann<br>Integrals. International Journal of Computational Intelligence Systems, 2021, 14, . | 1.6 | 15        |
| 45 | On Convexity, Monotonicity and Positivity Analysis for Discrete Fractional Operators Defined Using<br>Exponential Kernels. Fractal and Fractional, 2022, 6, 55.                            | 1.6 | 15        |
| 46 | General Raina fractional integral inequalities on coordinates of convex functions. Advances in<br>Difference Equations, 2021, 2021, .                                                      | 3.5 | 14        |
| 47 | Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7, 15041-15063.           | 0.7 | 14        |
| 48 | On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals.<br>AIMS Mathematics, 2020, 6, 712-725.                                                   | 0.7 | 13        |
| 49 | On a new type of fractional difference operators on h-step isolated time scales. Journal of Fractional<br>Calculus and Nonlinear Systems, 2020, 1, 46-74.                                  | 0.7 | 13        |
| 50 | Difference monotonicity analysis on discrete fractional operators with discrete generalized<br>Mittag-Leffler kernels. Advances in Difference Equations, 2021, 2021, .                     | 3.5 | 13        |
| 51 | Fractional Weighted Ostrowski-Type Inequalities and Their Applications. Symmetry, 2021, 13, 968.                                                                                           | 1.1 | 13        |
| 52 | On Iterative Methods for Solving Nonlinear Equations in Quantum Calculus. Fractal and Fractional, 2021, 5, 60.                                                                             | 1.6 | 13        |
| 53 | New Chebyshev type inequalities via a general family of fractional integral operators with a modified<br>Mittag-Leffler kernel. AIMS Mathematics, 2021, 6, 11167-11186.                    | 0.7 | 13        |
| 54 | A Generalized Uncertain Fractional Forward Difference Equations of Riemann-Liouville Type. Journal of Mathematics Research, 2019, 11, 43.                                                  | 0.1 | 13        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Some Higher-Degree Lacunary Fractional Splines in the Approximation of Fractional Differential Equations. Symmetry, 2021, 13, 422.                                                            | 1.1 | 12        |
| 56 | Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications. AIMS Mathematics, 2020, 5, 7316-7331.                                                            | 0.7 | 12        |
| 57 | Solution of Singular Integral Equations via Riemann–Liouville Fractional Integrals. Mathematical<br>Problems in Engineering, 2020, 2020, 1-8.                                                 | 0.6 | 11        |
| 58 | New Simpson Type Integral Inequalities for s -Convex Functions and Their Applications. Mathematical<br>Problems in Engineering, 2020, 2020, 1-12.                                             | 0.6 | 11        |
| 59 | A Correlation Between Solutions of Uncertain Fractional Forward Difference Equations and Their<br>Paths. Frontiers in Physics, 2020, 8, .                                                     | 1.0 | 11        |
| 60 | Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2021, 7, 1507-1535.                                         | 0.7 | 11        |
| 61 | Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry, 2021, 13, 2352.                                                              | 1.1 | 11        |
| 62 | New Riemann–Liouville Fractional-Order Inclusions for Convex Functions via Interval-Valued<br>Settings Associated with Pseudo-Order Relations. Fractal and Fractional, 2022, 6, 212.          | 1.6 | 11        |
| 63 | AN IMPROVEMENT OF THE POWER-MEAN INTEGRAL INEQUALITY IN THE FRAME OF FRACTAL SPACE AND CERTAIN RELATED MIDPOINT-TYPE INTEGRAL INEQUALITIES. Fractals, 2022, 30, .                             | 1.8 | 11        |
| 64 | Fuzzy Mixed Variational-like and Integral Inequalities for Strongly Preinvex Fuzzy Mappings. Symmetry,<br>2021, 13, 1816.                                                                     | 1.1 | 9         |
| 65 | Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through<br>fuzzy order relation. AEJ - Alexandria Engineering Journal, 2022, 61, 7089-7101.       | 3.4 | 9         |
| 66 | Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for<br>Convex Functions with an Exponential Kernel and Their Applications. Symmetry, 2022, 14, 836. | 1.1 | 9         |
| 67 | Solving the Modified Regularized Long Wave Equations via Higher Degree B-Spline Algorithm. Journal of Function Spaces, 2021, 2021, 1-10.                                                      | 0.4 | 8         |
| 68 | Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions. Mathematical<br>Biosciences and Engineering, 2021, 19, 812-835.                                         | 1.0 | 8         |
| 69 | Solutions of General Fractional-Order Differential Equations by Using the Spectral Tau Method.<br>Fractal and Fractional, 2022, 6, 7.                                                         | 1.6 | 8         |
| 70 | New generalized Riemann-Liouville fractional integral inequalities for convex functions. Journal of<br>Mathematical Inequalities, 2021, , 511-519.                                            | 0.5 | 7         |
| 71 | Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations.<br>Discrete and Continuous Dynamical Systems - Series S, 2022, 15, 427.                       | 0.6 | 7         |
| 72 | Fractional Integral Inequalities for Exponentially Nonconvex Functions and Their Applications.<br>Fractal and Fractional, 2021, 5, 80.                                                        | 1.6 | 7         |

Pshtiwan Mohammed

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Computational Non-Polynomial Spline Function for Solving Fractional Bagely-Torvik Equatio.<br>Mathematical Sciences Letters, 2017, 6, 83-87.                                                                                                  | 0.7 | 7         |
| 74 | New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel.<br>Mathematical Biosciences and Engineering, 2022, 19, 4062-4074.                                                                        | 1.0 | 7         |
| 75 | On positivity and monotonicity analysis for discrete fractional operators with discrete<br>Mittag–Leffler kernel. Mathematical Methods in the Applied Sciences, 0, , .                                                                        | 1.2 | 7         |
| 76 | Some Generalizations of Opial Type Inequalities,. Applied Mathematics and Information Sciences, 2020, 14, 809-816.                                                                                                                            | 0.7 | 6         |
| 77 | Computational Method for Fractional Differential Equations Using Nonpolynomial Fractional Spline.<br>Mathematical Sciences Letters, 2016, 5, 131-136.                                                                                         | 0.7 | 6         |
| 78 | Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral<br>Operators. Fractal and Fractional, 2022, 6, 131.                                                                                                 | 1.6 | 6         |
| 79 | New Generalized Class of Convex Functions and Some Related Integral Inequalities. Symmetry, 2022, 14, 722.                                                                                                                                    | 1.1 | 6         |
| 80 | Some Hermite–Hadamard and Opial dynamic inequalities on time scales. Journal of Inequalities and Applications, 2021, 2021, .                                                                                                                  | 0.5 | 5         |
| 81 | Some New Estimates on Coordinates of Left and Right Convex Interval-Valued Functions Based on Pseudo Order Relation. Symmetry, 2022, 14, 473.                                                                                                 | 1.1 | 5         |
| 82 | Hermite-Hadamard-type Inequalities for Conformable Integrals. , 0, , 1-12.                                                                                                                                                                    | 0.3 | 5         |
| 83 | Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types. Electronic Research Archive, 2022, 30, 3058-3070.                                                                      | 0.4 | 5         |
| 84 | Analysis of positivity results for discrete fractional operators by means of exponential kernels. AIMS<br>Mathematics, 2022, 7, 15812-15823.                                                                                                  | 0.7 | 4         |
| 85 | Twelfth degree spline with application to quadrature. SpringerPlus, 2016, 5, 2096.                                                                                                                                                            | 1.2 | 3         |
| 86 | On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6, 4638-4663.                                                | 0.7 | 3         |
| 87 | Inequalities for Estimations of Integrals Related to Higher-Order Strongly <math<br>xmlns="http://www.w3.org/1998/Math/MathML" id="M1"&gt; <mi>n</mi> -Polynomial Preinvex<br/>Functions. Journal of Mathematics, 2020, 2020, 1-12.</math<br> | 0.5 | 2         |
| 88 | Existence of solutions for a class of nonlinear fractional difference equations of the<br>Riemann–Liouville type. , 2022, 2022, .                                                                                                             |     | 2         |
| 89 | Analytical and Numerical Monotonicity Analyses for Discrete Delta Fractional Operators.<br>Mathematics, 2022, 10, 1753.                                                                                                                       | 1.1 | 2         |
| 90 | Monotonicity Results for Nabla Riemann–Liouville Fractional Differences. Mathematics, 2022, 10, 2433.                                                                                                                                         | 1.1 | 2         |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Discrete Prabhakar fractional difference and sum operators. Chaos, Solitons and Fractals, 2021, 150, 111182.                                                                                            | 2.5 | 1         |
| 92 | Numerical Solution of Fractional Differential Equations by using Fractional Spline Functions<br>Journal of Zankoy Sulaimani - Part A, 2015, 17, 97-110.                                                 | 0.1 | 1         |
| 93 | Fractional integral inequalities of Hermite-Hadamard type for convex functions with respect to a monotone function. Filomat, 2020, 34, 2401-2411.                                                       | 0.2 | 1         |
| 94 | Some Integral Inequalities in ?-Fractional Calculus and Their Applications. Mathematics, 2022, 10, 344.                                                                                                 | 1.1 | 1         |
| 95 | Analysing discrete fractional operators with exponential kernel for positivity in lower boundedness.<br>AIMS Mathematics, 2022, 7, 10387-10399.                                                         | 0.7 | 1         |
| 96 | Positivity and monotonicity results for discrete fractional operators involving the exponential kernel. Mathematical Biosciences and Engineering, 2022, 19, 5120-5133.                                  | 1.0 | 1         |
| 97 | Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex<br>Fuzzy-Interval-Valued Functions. International Journal of Computational Intelligence Systems, 2022,<br>15, 1. | 1.6 | 1         |
| 98 | Composition Fractional Integral Inequality for the Reiman-Liouville type with applications. Journal of<br>Zankoy Sulaimani - Part A, 2015, 18, 227-230.                                                 | 0.1 | 0         |
| 99 | Analytical results for positivity of discrete fractional operators with approximation of the domain of solutions. Mathematical Biosciences and Engineering, 2022, 19, 7272-7283.                        | 1.0 | Ο         |