Hussein Rasool Abid Abid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8793201/publications.pdf

Version: 2024-02-01

30 papers 1,997 citations

279798 23 h-index 30 g-index

30 all docs 30 docs citations

30 times ranked

2458 citing authors

#	Article	IF	CITATIONS
1	Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chemical Engineering Journal, 2012, 187, 415-420.	12.7	227
2	Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. Journal of Colloid and Interface Science, 2016, 478, 344-352.	9.4	208
3	Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2100514.	19.5	132
4	One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. Journal of Colloid and Interface Science, 2017, 490, 685-694.	9.4	116
5	Amino-functionalized Zr-MOF nanoparticles for adsorption of CO ₂ and CH ₄ . International Journal of Smart and Nano Materials, 2013, 4, 72-82.	4.2	114
6	Adsorption of CH4 and CO2 on Zr-metal organic frameworks. Journal of Colloid and Interface Science, 2012, 366, 120-124.	9.4	110
7	Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Design, Development and Therapy, 2017, Volume 11, 2685-2695.	4.3	105
8	Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel, 2015, 160, 318-327.	6.4	99
9	Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53. Polyhedron, 2016, 120, 103-111.	2.2	92
10	Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66). Nanoscale, 2012, 4, 3089.	5.6	87
11	Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 2018, 28, 160-167.	4.4	72
12	Hydrogen diffusion in coal: Implications for hydrogen geoâ€storage. Journal of Colloid and Interface Science, 2022, 608, 1457-1462.	9.4	68
13	Bifunctionalized Metal Organic Frameworks, UiO-66-NO ₂ -N (N = -NH ₂ ,) Tj ETQq1 1 0.7 CO ₂ and N ₂ . Journal of Chemical & Engineering Data, 2015, 60, 2152-2161.	784314 rg 1.9	gBT /Overlock 67
14	Functionalized UiO-66 by Single and Binary (OH) ₂ and NO ₂ Groups for Uptake of CO ₂ and CH ₄ . Industrial & Engineering Chemistry Research, 2016, 55, 7924-7932.	3.7	61
15	Facile directions for synthesis, modification and activation of MOFs. Materials Today Chemistry, 2020, 17, 100343.	3.5	53
16	Hydrogen Adsorption on Subâ€Bituminous Coal: Implications for Hydrogen Geoâ€Storage. Geophysical Research Letters, 2021, 48, e2021GL092976.	4.0	48
17	Hydrogen storage potential of coals as a function of pressure, temperature, and rank. Journal of Colloid and Interface Science, 2022, 620, 86-93.	9.4	47
18	Adsorption of nanoparticles on glass bead surface for enhancing proppant performance: A systematic experimental study. Journal of Molecular Liquids, 2021, 328, 115398.	4.9	43

#	Article	IF	CITATIONS
19	Enhanced CO ₂ Adsorption and Selectivity of CO ₂ /N ₂ on Amino-MIL-53(Al) Synthesized by Polar Co-solvents. Energy & E	5.1	39
20	Boosting CO ₂ adsorption and selectivity in metal–organic frameworks of MIL-96(Al) <i>via</i> second metal Ca coordination. RSC Advances, 2020, 10, 8130-8139.	3.6	36
21	Hydrogen Flooding of a Coal Core: Effect on Coal Swelling. Geophysical Research Letters, 2022, 49, .	4.0	35
22	Cascade applications of robust MIL-96 metal organic frameworks in environmental remediation: Proof of concept. Chemical Engineering Journal, 2018, 341, 262-271.	12.7	26
23	Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks. Journal of Colloid and Interface Science, 2018, 523, 75-85.	9.4	26
24	Multimetal organic frameworks as drug carriers: aceclofenac as a drug candidate. Drug Design, Development and Therapy, 2019, Volume 13, 23-35.	4.3	23
25	Drastic enhancement of CO2 adsorption capacity by negatively charged sub-bituminous coal. Energy, 2021, 233, 120924.	8.8	16
26	Enhancing CO2 storage capacity and containment security of basaltic formation using silica nanofluids. International Journal of Greenhouse Gas Control, 2021, 112, 103516.	4.6	15
27	Effect of CO2 Flooding on the Wettability Evolution of Sand-Stone. Energies, 2021, 14, 5542.	3.1	12
28	Optimisation of <scp>CH₄</scp> and <scp>CO₂</scp> conversion and selectivity of <scp>H₂</scp> and <scp>CO</scp> for the dry reforming of methane by a microwave plasma technique using a <scp>B</scp> ox– <scp>B</scp> ehnken design. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2254.	1.5	8
29	Promising material for large-scale H2 storage and efficient H2-CO2 separation. Separation and Purification Technology, 2022, 298, 121542.	7.9	7
30	Striking CO2 capture and CO2/N2 separation by Mn/Al bimetallic MIL-53. Polyhedron, 2021, 193, 114898.	2.2	5