Jianjun J Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8793050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial Communities Associated with Potato Common Scab-Suppressive Soil Determined by Pyrosequencing Analyses. Plant Disease, 2012, 96, 718-725.	0.7	177
2	Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, 2016, 98, 18-26.	1.4	103
3	Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biological Control, 2012, 60, 225-232.	1.4	77
4	Culture-Based Assessment of Microbial Communities in Soil Suppressive to Potato Common Scab. Plant Disease, 2012, 96, 712-717.	0.7	59
5	Effects of Broccoli Rotation on Lettuce Drop Caused by Sclerotinia minor and on the Population Density of Sclerotia in Soil. Plant Disease, 2003, 87, 159-166.	0.7	48
6	Field management of Sclerotinia stem rot of soybean using biological control agents. Biological Control, 2012, 60, 141-147.	1.4	44
7	Effect of Soil Inoculum Density of <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> Race 4 on Disease Development in Cotton. Plant Disease, 2009, 93, 1324-1328.	0.7	41
8	Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China. European Journal of Plant Pathology, 2016, 144, 467-476.	0.8	41
9	Assessing the Risk for Resistance and Elucidating the Genetics of Colletotrichum truncatum That Is Only Sensitive to Some DMI Fungicides. Frontiers in Microbiology, 2017, 8, 1779.	1.5	38
10	Biofumigation on Post-Harvest Diseases of Fruits Using a New Volatile-Producing Fungus of Ceratocystis fimbriata. PLoS ONE, 2015, 10, e0132009.	1.1	36
11	Inhibitory Effects of Essential Oils for Controlling <i>Phytophthora capsici</i> . Plant Disease, 2012, 96, 797-803.	0.7	33
12	Effects of Fusarium solani and F. oxysporum Infection on the Metabolism of Ginsenosides in American Ginseng Roots. Molecules, 2015, 20, 10535-10552.	1.7	30
13	Wild Type Sensitivity and Mutation Analysis for Resistance Risk to Fluopicolide in <i>Phytophthora capsici</i> . Plant Disease, 2011, 95, 1535-1541.	0.7	29
14	Taxonomy of fungal complex causing red-skin root of Panax ginseng in China. Journal of Ginseng Research, 2020, 44, 506-518.	3.0	27
15	Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials. Biological Control, 2013, 67, 373-379.	1.4	26
16	Detection of Clavibacter michiganensis subsp. michiganensis in viable but nonculturable state from tomato seed using improved qPCR. PLoS ONE, 2018, 13, e0196525.	1.1	25
17	A Potential Biocontrol Agent Streptomycesviolaceusniger AC12AB for Managing Potato Common Scab. Frontiers in Microbiology, 2019, 10, 202.	1.5	23
18	Clay nanosheet-mediated delivery of recombinant plasmids expressing artificial miRNAs via leaf spray to prevent infection by plant DNA viruses. Horticulture Research, 2020, 7, 179.	2.9	23

Jianjun J Hao

#	Article	IF	CITATIONS
19	A Novel <i>Streptomyces</i> sp. Strain PBSH9 for Controlling Potato Common Scab Caused by <i>Streptomyces galilaeus</i> . Plant Disease, 2020, 104, 1986-1993.	0.7	21
20	Antimicrobial Activity of Chestnut Extracts for Potential Use in Managing Soilborne Plant Pathogens. Plant Disease, 2012, 96, 354-360.	0.7	20
21	Expression profiling and regulatory network of cucumber microRNAs and their putative target genes in response to cucumber green mottle mosaic virus infection. Archives of Virology, 2019, 164, 1121-1134.	0.9	20
22	Interaction between Dickeya dianthicola and Pectobacterium parmentieri in Potato Infection under Field Conditions. Microorganisms, 2021, 9, 316.	1.6	18
23	Evaluation of fungicides enestroburin and SYP1620 on their inhibitory activities to fungi and oomycetes and systemic translocation in plants. Pesticide Biochemistry and Physiology, 2014, 112, 19-25.	1.6	17
24	Fungicide Sensitivity of <i>Pythium</i> spp. Associated with Cavity Spot of Carrot in California and Michigan. Plant Disease, 2012, 96, 384-388.	0.7	16
25	Fungicide SYP-14288 Inducing Multidrug Resistance in <i>Rhizoctonia solani</i> . Plant Disease, 2020, 104, 2563-2570.	0.7	16
26	Species of Dickeya and Pectobacterium Isolated during an Outbreak of Blackleg and Soft Rot of Potato in Northeastern and North Central United States. Microorganisms, 2021, 9, 1733.	1.6	14
27	Complete Genome Sequence of Dickeya dianthicola ME23, a Pathogen Causing Blackleg and Soft Rot Diseases of Potato. Microbiology Resource Announcements, 2019, 8, .	0.3	13
28	Identifying optimal reference genes for the normalization of microRNA expression in cucumber under viral stress. PLoS ONE, 2018, 13, e0194436.	1.1	12
29	Artificial microRNA-mediated resistance to cucumber green mottle mosaic virus in Nicotiana benthamiana. Planta, 2019, 250, 1591-1601.	1.6	12
30	Histological observation of potato in response to Rhizoctonia solani infection. European Journal of Plant Pathology, 2016, 145, 289-303.	0.8	11
31	Tracking pesticide exposure to operating workers for risk assessment in seed coating with tebuconazole and carbofuran. Pest Management Science, 2021, 77, 2820-2825.	1.7	11
32	Internalization of Pathogens in Produce. , 0, , 55-80.		10
33	ECX: An R Package for Studying Sensitivity of Antimicrobial Substances Using Spiral Plating Technology. Plant Health Progress, 2016, 17, 188-194.	0.8	9
34	Synthesis and antifungal activity of 2-allylphenol derivatives against fungal plant pathogens. Pesticide Biochemistry and Physiology, 2017, 135, 47-51.	1.6	9
35	Metabolic Mechanism of Plant Defense against Rice Blast Induced by Probenazole. Metabolites, 2021, 11, 246.	1.3	9
36	Optimizing the application of Bacillus velezensis BAC03 in controlling the disease caused by Streptomyces scabies. BioControl, 2017, 62, 535-544.	0.9	8

Jianjun J Hao

#	Article	IF	CITATIONS
37	Encapsulation of fluazinam to extend efficacy duration in controlling <i>Botrytis cinerea</i> on cucumber. Pest Management Science, 2021, 77, 2836-2842.	1.7	7
38	Responses of Soil Abiotic Properties and Microbial Community Structure to 25-Year Cucumber Monoculture in Commercial Greenhouses. Agriculture (Switzerland), 2021, 11, 341.	1.4	7
39	Irreplaceable Role of Amendment-Based Strategies to Enhance Soil Health and Disease Suppression in Potato Production. Microorganisms, 2021, 9, 1660.	1.6	7
40	Evaluation of the Risk of Development of Fluopicolide Resistance in <i>Phytophthora erythroseptica</i> . Plant Disease, 2019, 103, 284-288.	0.7	6
41	Genotyping Dickeya dianthicola Causing Potato Blackleg and Soft Rot Outbreak Associated With Inoculum Geography in the United States. Plant Disease, 2021, 105, PDIS-10-20-2138.	0.7	5
42	Pangenomic Analysis of Dickeya dianthicola Strains Related to the Outbreak of Blackleg and Soft Rot of Potato in USA. Plant Disease, 2021, , PDIS03210587RE.	0.7	5
43	Effects of indole derivatives from Purpureocillium lilacinum in controlling tobacco mosaic virus. Pesticide Biochemistry and Physiology, 2022, 183, 105077.	1.6	5
44	Roles of Genotype-Determined Mycotoxins in Maize Seedling Blight Caused by Fusarium graminearum. Plant Disease, 2017, 101, 1103-1112.	0.7	4
45	Inhibition of Amphiphilic N-Alkyl-O-carboxymethyl Chitosan Derivatives on Alternaria macrospora. BioMed Research International, 2018, 2018, 1-9.	0.9	4
46	Leucine Regulates Zoosporic Germination and Infection by Phytophthora erythroseptica. Frontiers in Microbiology, 2019, 10, 131.	1.5	4
47	Roles of the EPS66A polysaccharide from Streptomyces sp. in inducing tobacco resistance to tobacco mosaic virus. International Journal of Biological Macromolecules, 2022, 209, 885-894.	3.6	4
48	Characterization of cmcp Gene as a Pathogenicity Factor of Ceratocystis manginecans. Frontiers in Microbiology, 2020, 11, 1824.	1.5	3
49	Metabolic Fingerprinting for Identifying the Mode of Action of the Fungicide SYP-14288 on Rhizoctonia solani. Frontiers in Microbiology, 2020, 11, 574039.	1.5	3
50	Cytochrome P450 and Glutathione S-Transferase Confer Metabolic Resistance to SYP-14288 and Multi-Drug Resistance in Rhizoctonia solani. Frontiers in Microbiology, 2022, 13, 806339.	1.5	3
51	Impact of Soil Disinfestation on Fungal and Bacterial Communities in Soil With Cucumber Cultivation. Frontiers in Microbiology, 2021, 12, 685111.	1.5	2
52	Dickeya dianthicola Is Not Vectored by Two Common Insect Pests of Potato. PhytoFrontiers, 0, , PHYTOFR-12-20-0.	0.8	2
53	First report of Bacillus altitudinis causing seed rot of pomegranate in China. Australasian Plant Pathology, 2021, 50, 427-429.	0.5	1
54	Characterization of the host range and sensitivity to fungicides of <i>Trichothecium</i> spp. associated with fruit rot in the field and inÂstorage. Plant Pathology, 0, , .	1.2	1