Alex van der Ham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8793/publications.pdf Version: 2024-02-01

ALEY VAN DED HAM

#	Article	IF	CITATIONS
1	Dielectricâ€Modulated Biosensing with Ultrahighâ€Frequencyâ€Operated Graphene Fieldâ€Effect Transistors. Advanced Materials, 2022, 34, e2106666.	21.0	16
2	Growth of Graphene on a Liquified Copper Skin at Submelting Temperatures. ACS Materials Au, 2022, 2, 79-84.	6.0	0
3	Dielectricâ€Modulated Biosensing with Ultrahighâ€Frequencyâ€Operated Graphene Fieldâ€Effect Transistors (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1
4	Freestanding non-covalent thin films of the propeller-shaped polycyclic aromatic hydrocarbon decacyclene. Nature Communications, 2022, 13, 1920.	12.8	1
5	Predoped Oxygenated Defects Activate Nitrogen-Doped Graphene for the Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 173-182.	11.2	17
6	Macroscopic and Microscopic Wettability of Graphene. Langmuir, 2021, 37, 4049-4055.	3.5	15
7	Reversible hydrogenation restores defected graphene to graphene. Science China Chemistry, 2021, 64, 1047-1056.	8.2	6
8	A Threeâ€Step Synthesis of 4 <i>H</i> yclopenta[<i>def</i>]phenanthrene from Pyrene. European Journal of Organic Chemistry, 2021, 2021, 2013-2017.	2.4	6
9	Inert Mask Lithography of Edge Narrowed Graphene Nanoribbons Directly Contacted to Metallic Electrodes. Advanced Materials Interfaces, 2021, 8, 2100293.	3.7	0
10	Ultrasensitive Fieldâ€Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small, 2020, 16, e1902820.	10.0	75
11	Encapsulation of Graphene in the Hydrophobic Core of a Lipid Bilayer. Langmuir, 2020, 36, 14478-14482.	3.5	8
12	Supramolecular Multilayered Templates for Fabricating Nanometer-Precise Spacings: Implications for the Next-Generation of Devices Integrating Nanogap/Nanochannel Components. ACS Applied Nano Materials, 2020, 3, 10586-10590.	5.0	1
13	Facile and Ultraclean Graphene-on-Glass Nanopores by Controlled Electrochemical Etching. ACS Sensors, 2020, 5, 2317-2325.	7.8	11
14	Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons. Nature Nanotechnology, 2020, 15, 307-312.	31.5	127
15	Graphene Liquid Cells Assembled through Loopâ€Assisted Transfer Method and Located with Correlated Lightâ€Electron Microscopy. Advanced Functional Materials, 2020, 30, 1904468.	14.9	24
16	Liquids relax and unify strain in graphene. Nature Communications, 2020, 11, 898.	12.8	20
17	Contactless Spin Switch Sensing by Chemoâ€Electric Gating of Graphene. Advanced Materials, 2020, 32, e1903575.	21.0	32
18	Computational and NMR Studies on the Complexation of Lithium Ion to 8 rownâ€4. ChemPhysChem, 2019, 20, 2103-2109.	2.1	15

Alex van der Ham

#	Article	IF	CITATIONS
19	Selective ion sieving through arrays of sub-nanometer nanopores in chemically tunable 2D carbon membranes. Nanoscale, 2019, 11, 20785-20791.	5.6	14
20	Lateral Non-covalent Clamping of Graphene at the Edges Using a Lipid Scaffold. ACS Applied Materials & Interfaces, 2018, 10, 11328-11332.	8.0	6
21	Graphene: Hydrophilicity of Graphene in Water through Transparency to Polar and Dispersive Interactions (Adv. Mater. 6/2018). Advanced Materials, 2018, 30, 1870041.	21.0	2
22	Quantum and electrochemical interplays in hydrogenated graphene. Nature Communications, 2018, 9, 793.	12.8	43
23	Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges. Nano Letters, 2018, 18, 2505-2510.	9.1	15
24	Wetting of water on graphene nanopowders of different thicknesses. Applied Physics Letters, 2018, 112,	3.3	20
25	Zeroâ€Depth Interfacial Nanopore Capillaries. Advanced Materials, 2018, 30, 1703602.	21.0	15
26	Hydrophilicity of Graphene in Water through Transparency to Polar and Dispersive Interactions. Advanced Materials, 2018, 30, 1703274.	21.0	61
27	Contact angle measurement of free-standing square-millimeter single-layer graphene. Nature Communications, 2018, 9, 4185.	12.8	102
28	Hybrid cold and hot-wall reaction chamber for the rapid synthesis of uniform graphene. Carbon, 2017, 118, 438-442.	10.3	15
29	Rupture index: A quantitative measure of sub-micrometer cracks in graphene. Carbon, 2017, 118, 556-560.	10.3	4
30	Ultrasensitive Ethene Detector Based on a Graphene–Copper(I) Hybrid Material. Nano Letters, 2017, 17, 7980-7988.	9.1	23
31	Sensing at the Surface of Graphene Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1603610.	21.0	230
32	Molecular Caging of Graphene with Cyclohexane: Transfer and Electrical Transport. ACS Central Science, 2016, 2, 904-909.	11.3	27
33	Graphene-stabilized lipid monolayer heterostructures: a novel biomembrane superstructure. Nanoscale, 2016, 8, 18646-18653.	5.6	18
34	Chemistry at the Edge of Graphene. ChemPhysChem, 2016, 17, 785-801.	2.1	120
35	Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond. Chemical Society Reviews, 2016, 45, 476-493.	38.1	150
36	DNA sequencing with nanopores. Nature Biotechnology, 2012, 30, 326-328.	17.5	300

#	Article	IF	CITATIONS
37	Atomic-Scale Electron-Beam Sculpting of Near-Defect-Free Graphene Nanostructures. Nano Letters, 2011, 11, 2247-2250.	9.1	246
38	DNA Translocation through Graphene Nanopores. Nano Letters, 2010, 10, 3163-3167.	9.1	908