Nigel W Bunnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8792571/publications.pdf

Version: 2024-02-01

8159 9073 22,345 217 76 144 citations h-index g-index papers 220 220 220 16107 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology, 2004, 126, 693-702.	0.6	1,246
2	Protease-Activated Receptors: Contribution to Physiology and Disease. Physiological Reviews, 2004, 84, 579-621.	13.1	1,012
3	Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. American Journal of Physiology - Cell Physiology, 1998, 274, C1429-C1452.	2.1	706
4	Mast Cell-Dependent Excitation of Visceral-Nociceptive Sensory Neurons in Irritable Bowel Syndrome. Gastroenterology, 2007, 132, 26-37.	0.6	668
5	4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13519-13524.	3.3	655
6	Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiological Reviews, 2006, 86, 1309-1379.	13.1	536
7	Role for protease activity in visceral pain in irritable bowel syndrome. Journal of Clinical Investigation, 2007, 117, 636-647.	3.9	490
8	Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. Biochemical Journal, 1997, 322, 1-18.	1.7	477
9	Tachykinins and Their Receptors: Contributions to Physiological Control and the Mechanisms of Disease. Physiological Reviews, 2014, 94, 265-301.	13.1	476
10	Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochemical Journal, 1996, 314, 1009-1016.	1.7	423
11	Endocytosis of Activated TrkA: Evidence that Nerve Growth Factor Induces Formation of Signaling Endosomes. Journal of Neuroscience, 1996, 16, 7950-7964.	1.7	395
12	Protease-Activated Receptor 2 Sensitizes the Capsaicin Receptor Transient Receptor Potential Vanilloid Receptor 1 to Induce Hyperalgesia. Journal of Neuroscience, 2004, 24, 4300-4312.	1.7	381
13	Protease-activated receptors in inflammation, neuronal signaling and pain. Trends in Pharmacological Sciences, 2001, 22, 146-152.	4.0	361
14	Induction of Intestinal Inflammation in Mouse by Activation of Proteinase-Activated Receptor-2. American Journal of Pathology, 2002, 161, 1903-1915.	1.9	342
15	Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. Journal of Physiology, 2007, 578, 715-733.	1.3	338
16	Cigarette smokeâ \in "induced neurogenic inflammation is mediated by \hat{l}_{\pm} , \hat{l}^2 -unsaturated aldehydes and the TRPA1 receptor in rodents. Journal of Clinical Investigation, 2008, 118, 2574-82.	3.9	328
17	Endosomes: A legitimate platform for the signaling train. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17615-17622.	3.3	317
18	Protease-Activated Receptor 2 Mediates Eosinophil Infiltration and Hyperreactivity in Allergic Inflammation of the Airway. Journal of Immunology, 2002, 169, 5315-5321.	0.4	306

#	Article	IF	Citations
19	The TGR5 receptor mediates bile acid–induced itch and analgesia. Journal of Clinical Investigation, 2013, 123, 1513-1530.	3.9	301
20	Calcitonin receptorâ€ike receptor (CLR), receptor activityâ€modifying protein 1 (RAMP1), and calcitonin geneâ€related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. Journal of Comparative Neurology, 2008, 507, 1277-1299.	0.9	287
21	Mast Cell Tryptase Controls Paracellular Permeability of the Intestine. Journal of Biological Chemistry, 2005, 280, 31936-31948.	1.6	286
22	The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice. Gastroenterology, 2013, 144, 145-154.	0.6	265
23	Protease-activated receptor 2 sensitizes TRPV1 by protein kinase CÉ and A-dependent mechanisms in rats and mice. Journal of Physiology, 2006, 575, 555-571.	1.3	243
24	Proteinase-activated Receptors, Targets for Kallikrein Signaling*. Journal of Biological Chemistry, 2006, 281, 32095-32112.	1.6	217
25	Mechanisms of Desensitization and Resensitization of Proteinase-activated Receptor-2. Journal of Biological Chemistry, 1996, 271, 22003-22016.	1.6	215
26	Biased Signaling of Protease-Activated Receptors. Frontiers in Endocrinology, 2014, 5, 67.	1.5	201
27	Characterization of Antisera Specific to NK1, NK2, and NK3 Neurokinin Receptors and their Utilization to Localize Receptors in the Rat Gastrointestinal Tract. Journal of Neuroscience, 1996, 16, 6975-6986.	1.7	198
28	The Bile Acid Receptor TGR5 Activates the TRPA1 Channel to Induce Itch in Mice. Gastroenterology, 2014, 147, 1417-1428.	0.6	188
29	Neurokinin 1 Receptor Internalization in Spinal Cord Slices Induced by Dorsal Root Stimulation Is Mediated by NMDA Receptors. Journal of Neuroscience, 1997, 17, 8129-8136.	1.7	171
30	Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and â°'2. Journal of Physiology, 1999, 517, 741-756.	1.3	168
31	Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nature Communications, 2017, 8, 1887.	5.8	165
32	Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. Journal of Clinical Investigation, 1999, 103, 261-269.	3.9	165
33	Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Science Translational Medicine, 2017, 9, .	5.8	158
34	Trypsin IV, a Novel Agonist of Protease-activated Receptors 2 and 4. Journal of Biological Chemistry, 2004, 279, 13532-13539.	1.6	155
35	Trafficking of Proteinase-activated Receptor-2 and β-Arrestin-1 Tagged with Green Fluorescent Protein. Journal of Biological Chemistry, 1999, 274, 18524-18535.	1.6	153
36	Cathepsin S Causes Inflammatory Pain via Biased Agonism of PAR2 and TRPV4. Journal of Biological Chemistry, 2014, 289, 27215-27234.	1.6	153

#	Article	IF	CITATIONS
37	Mast cell tryptase and proteinaseâ€activated receptor 2 induce hyperexcitability of guineaâ€pig submucosal neurons. Journal of Physiology, 2003, 547, 531-542.	1.3	151
38	Cellular sites of expression of the neurokinin-1 receptor in the rat gastrointestinal tract. Journal of Comparative Neurology, 1995, 358, 531-540.	0.9	150
39	Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12045-12050.	3.3	146
40	Protease-activated Receptor 2 (PAR2) Protein and Transient Receptor Potential Vanilloid 4 (TRPV4) Protein Coupling Is Required for Sustained Inflammatory Signaling*. Journal of Biological Chemistry, 2013, 288, 5790-5802.	1.6	140
41	Interactions of the Skin and Nervous System. Journal of Investigative Dermatology Symposium Proceedings, 1997, 2, 23-26.	0.8	136
42	Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12309-12314.	3.3	136
43	Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 (TRPV4) to Cause Inflammation and Pain. Journal of Biological Chemistry, 2015, 290, 13875-13887.	1.6	134
44	Proteinase-Activated Receptor-2-Induced Colonic Inflammation in Mice: Possible Involvement of Afferent Neurons, Nitric Oxide, and Paracellular Permeability. Journal of Immunology, 2003, 170, 4296-4300.	0.4	133
45	The G Protein–Coupled Receptor–Transient Receptor Potential Channel Axis: Molecular Insights for Targeting Disorders of Sensation and Inflammation. Pharmacological Reviews, 2015, 67, 36-73.	7.1	131
46	Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7438-E7447.	3.3	128
47	Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. American Journal of Physiology - Renal Physiology, 2008, 294, G1288-G1298.	1.6	127
48	Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. British Journal of Pharmacology, 2001, 133, 975-987.	2.7	125
49	Proteinase-Activated Receptor-2 and Human Lung Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 339-346.	1.4	122
50	Proinflammatory role of proteinaseâ€activated receptorâ€2 in humans and mice during cutaneous inflammation in vivo. FASEB Journal, 2003, 17, 1871-1885.	0.2	121
51	Pseudomonas aeruginosaElastase Disables Proteinase-Activated Receptor 2 in Respiratory Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 411-419.	1.4	120
52	c-Cbl Mediates Ubiquitination, Degradation, and Down-regulation of Human Protease-activated Receptor 2. Journal of Biological Chemistry, 2005, 280, 16076-16087.	1.6	119
53	Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome. Gastroenterology, 2015, 149, 433-444.e7.	0.6	116
54	Agonists of Proteinase-Activated Receptor 2 Induce Cytokine Release and Activation of Nuclear Transcription Factor 1ºB in Human Dermal Microvascular Endothelial Cells. Journal of Investigative Dermatology, 2002, 118, 380-385.	0.3	115

#	Article	IF	Citations
55	G Protein-Coupled Receptors: Dynamic Machines for Signaling Pain and Itch. Neuron, 2015, 88, 635-649.	3.8	115
56	Protease-Activated Receptors: How Proteases Signal to Cells to Cause Inflammation and Pain. Seminars in Thrombosis and Hemostasis, 2006, 32, 039-048.	1.5	110
57	Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. American Journal of Physiology - Renal Physiology, 2010, 298, G81-G91.	1.6	105
58	Acute ACE Inhibition Causes Plasma Extravasation in Mice That is Mediated by Bradykinin and Substance P. Hypertension, 1998, 31, 1299-1304.	1.3	103
59	Therapeutic Targeting of Endosomal G-Protein-Coupled Receptors. Trends in Pharmacological Sciences, 2018, 39, 879-891.	4.0	103
60	A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nature Nanotechnology, 2019, 14, 1150-1159.	15.6	103
61	Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on Gastrointestinal Motility in a Mouse Model of Depression. Gastroenterology, 2019, 157, 507-521.e4.	0.6	103
62	TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice. Brain, 2018, 141, 2312-2328.	3.7	101
63	Localization of calcitonin receptor-like receptor and receptor activity modifying protein 1 in enteric neurons, dorsal root ganglia, and the spinal cord of the rat. Journal of Comparative Neurology, 2005, 490, 239-255.	0.9	100
64	Neutral Endopeptidase Terminates Substance P-Induced Inflammation in Allergic Contact Dermatitis. Journal of Immunology, 2001, 166, 1285-1291.	0.4	98
65	Protease-activated receptors: how proteases signal to cells. Current Opinion in Pharmacology, 2001, 1, 575-582.	1.7	96
66	Substance P mediates inflammatory oedema in acute pancreatitis via activation of the neurokinin-1 receptor in rats and mice. British Journal of Pharmacology, 2000, 130, 505-512.	2.7	95
67	Trypsin IV or Mesotrypsin and p23 Cleave Protease-activated Receptors 1 and 2 to Induce Inflammation and Hyperalgesia. Journal of Biological Chemistry, 2007, 282, 26089-26100.	1.6	92
68	Endothelin-converting enzyme-1 regulates endosomal sorting of calcitonin receptor-like receptor and \hat{l}^2 -arrestins. Journal of Cell Biology, 2007, 179, 981-997.	2.3	91
69	Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. American Journal of Physiology - Renal Physiology, 2006, 290, G959-G969.	1.6	90
70	Sensitization of Peripheral Sensory Nerves by Mediators From Colonic Biopsies of Diarrhea-Predominant Irritable Bowel Syndrome Patients: A Role for PAR2. American Journal of Gastroenterology, 2013, 108, 1634-1643.	0.2	90
71	Desensitization of the Neurokinin-1 Receptor (NK1-R) in Neurons: Effects of Substance P on the Distribution of NK1-R, G _{\hat{l}+q/11} , G-Protein Receptor Kinase-2/3, and \hat{l} 2-Arrestin-1/2. Molecular Biology of the Cell, 1998, 9, 2305-2324.	0.9	86
72	Substance P-induced Trafficking of Î ² -Arrestins. Journal of Biological Chemistry, 1999, 274, 16257-16268.	1.6	86

#	Article	IF	CITATIONS
73	Prognostic and mechanistic potential of progesterone sulfates in intrahepatic cholestasis of pregnancy and pruritus gravidarum. Hepatology, 2016, 63, 1287-1298.	3.6	85
74	A role for proteinase-activated receptor–1 in inflammatory bowel diseases. Journal of Clinical Investigation, 2004, 114, 1444-1456.	3.9	82
75	Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Canadian Journal of Physiology and Pharmacology, 2003, 81, 920-927.	0.7	81
76	Transient Receptor Potential Ankyrin 1 Is Expressed by Inhibitory Motoneurons of the Mouse Intestine. Gastroenterology, 2011, 141, 565-575.e4.	0.6	81
77	Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus. Journal of Clinical Investigation, 2014, 124, 2683-2695.	3.9	81
78	Distribution of neurokinin-2 receptors in the guinea-pig gastrointestinal tract. Cell and Tissue Research, 1996, 286, 281-292.	1.5	79
79	Direct Observation of Endocytosis of Gastrin Releasing Peptide and Its Receptor. Journal of Biological Chemistry, 1995, 270, 4603-4611.	1.6	78
80	The Bile Acid Receptor TGR5 Does Not Interact with \hat{l}^2 -Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts. Journal of Biological Chemistry, 2013, 288, 22942-22960.	1.6	78
81	Neutral Endopeptidase Expression and Distribution in Human Skin and Wounds. Journal of Investigative Dermatology, 1999, 112, 873-881.	0.3	77
82	Substance P released by TRPV1-expressing neurons produces reactive oxygen species that mediate ethanol-induced gastric injury. Free Radical Biology and Medicine, 2007, 43, 581-589.	1.3	77
83	Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. American Journal of Physiology - Renal Physiology, 2010, 299, G556-G571.	1.6	76
84	Cathepsin S Is Activated During Colitis and Causes Visceral Hyperalgesia by a PAR2-Dependent Mechanism in Mice. Gastroenterology, 2011, 141, 1864-1874.e3.	0.6	76
85	Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs. Journal of Applied Physiology, 2006, 101, 506-511.	1.2	75
86	Recycling and Resensitization of the Neurokinin 1 Receptor. Journal of Biological Chemistry, 2004, 279, 30670-30679.	1.6	74
87	Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. American Journal of Physiology - Cell Physiology, 2003, 284, C1319-C1329.	2.1	73
88	Identification of Potential Tyrosine-containing Endocytic Motifs in the Carboxyl-tail and Seventh Transmembrane Domain of the Neurokinin 1 Receptor. Journal of Biological Chemistry, 1997, 272, 2363-2372.	1.6	72
89	Neuroâ€humoral signalling by bile acids and the TGR5 receptor in the gastrointestinal tract. Journal of Physiology, 2014, 592, 2943-2950.	1.3	72
90	Endosomal signaling of delta opioid receptors is an endogenous mechanism and therapeutic target for relief from inflammatory pain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15281-15292.	3.3	72

#	Article	IF	CITATIONS
91	Endosomal Deubiquitinating Enzymes Control Ubiquitination and Down-regulation of Protease-activated Receptor 2. Journal of Biological Chemistry, 2009, 284, 28453-28466.	1.6	71
92	Basolateral proteinaseâ€activated receptor (PARâ€2) induces chloride secretion in Mâ€1 mouse renal cortical collecting duct cells. Journal of Physiology, 1999, 521, 3-17.	1.3	70
93	Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11838-11843.	3.3	70
94	Substance P release in the dorsal horn assessed by receptor internalization: NMDA receptors counteract a tonic inhibition by GABABreceptors. European Journal of Neuroscience, 1999, 11, 417-426.	1.2	66
95	Transient Receptor Potential Vanilloid (TRPV-1) Promotes Neurogenic Inflammation in the Pancreas Via Activation of the Neurokinin-1 Receptor (NK-1R). Pancreas, 2005, 30, 260-265.	0.5	66
96	Post-endocytic Sorting of Calcitonin Receptor-like Receptor and Receptor Activity-modifying Protein 1. Journal of Biological Chemistry, 2007, 282, 12260-12271.	1.6	66
97	Neuropeptide regulation of human dermal microvascular endothelial cell ICAM-1 expression and function. American Journal of Physiology - Cell Physiology, 1998, 275, C1580-C1590.	2.1	65
98	Heterologous regulation of trafficking and signaling of G protein-coupled receptors: Â-Arrestin-dependent interactions between neurokinin receptors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3324-3329.	3.3	65
99	Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway. American Journal of Physiology - Renal Physiology, 2013, 304, G527-G535.	1.6	65
100	Dynamin and Rab5a-dependent Trafficking and Signaling of the Neurokinin 1 Receptor. Journal of Biological Chemistry, 2001, 276, 25427-25437.	1.6	64
101	Neutral endopeptidase inhibition in diabetic wound repair. Wound Repair and Regeneration, 2002, 10, 295-301.	1.5	64
102	Plasma membrane localization of the $\hat{l}\frac{1}{4}$ -opioid receptor controls spatiotemporal signaling. Science Signaling, 2016, 9, ra16.	1.6	61
103	Hepatocyte Growth Factor-regulated Tyrosine Kinase Substrate (HRS) Mediates Post-endocytic Trafficking of Protease-activated Receptor 2 and Calcitonin Receptor-like Receptor. Journal of Biological Chemistry, 2007, 282, 29646-29657.	1.6	60
104	Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice. Journal of Clinical Investigation, 2019, 129, 5424-5441.	3.9	60
105	Protease-Activated Receptors: Regulation of Neuronal Function. NeuroMolecular Medicine, 2005, 7, 079-100.	1.8	59
106	Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight, 2019, 4, .	2.3	59
107	Ubiquitin-dependent Down-regulation of the Neurokinin-1 Receptor. Journal of Biological Chemistry, 2006, 281, 27773-27783.	1.6	58
108	Pungent General Anesthetics Activate Transient Receptor Potential-A1 to Produce Hyperalgesia and Neurogenic Bronchoconstriction. Anesthesiology, 2010, 112, 1452-1463.	1.3	58

#	Article	IF	CITATIONS
109	Localization and Regulation of Fluorescently Labeled Delta Opioid Receptor, Expressed in Enteric Neurons of Mice. Gastroenterology, 2011, 141, 982-991.e8.	0.6	58
110	Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nature Communications, 2022, 13, 646.	5.8	57
111	Neutral Endopeptidase Activity is Increased in the Skin of Subjects with Diabetic Ulcers. Journal of Investigative Dermatology, 2002, 119, 1400-1404.	0.3	56
112	Endosomal Endothelin-converting Enzyme-1. Journal of Biological Chemistry, 2009, 284, 22411-22425.	1.6	56
113	Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Archiv European Journal of Physiology, 2012, 464, 353-365.	1.3	54
114	Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon. Journal of Physiology, 2007, 580, 977-991.	1.3	53
115	Substance P is a determinant of lethality in diet-induced hemorrhagic pancreatitis in mice. Surgery, 2000, 128, 232-239.	1.0	50
116	Neurogenic plasma leakage in mouse airways. British Journal of Pharmacology, 1999, 126, 522-528.	2.7	49
117	<scp>GPCR</scp> â€mediated <scp>EGF</scp> receptor transactivation regulates <scp>TRPV</scp> 4 action in the vasculature. British Journal of Pharmacology, 2015, 172, 2493-2506.	2.7	49
118	Fatty Acid-binding Proteins 1 and 2 Differentially Modulate the Activation of Peroxisome Proliferator-activated Receptor \hat{l}_{\pm} in a Ligand-selective Manner. Journal of Biological Chemistry, 2015, 290, 13895-13906.	1.6	49
119	Cutaneous allergic contact dermatitis responses are diminished in mice deficient in neurokinin 1 receptors and augmented by neurokinin 2 receptor blockage. FASEB Journal, 2004, 18, 1007-1009.	0.2	48
120	Protease-Activated Receptor 2, Dipeptidyl Peptidase I, and Proteases Mediate Clostridium difficile Toxin A Enteritis. Gastroenterology, 2007, 132, 2422-2437.	0.6	47
121	N-Glycosylation Determines Ionic Permeability and Desensitization of the TRPV1 Capsaicin Receptor. Journal of Biological Chemistry, 2012, 287, 21765-21772.	1.6	44
122	Stimulation of proteinase-activated receptor 2 excites jejunal afferent nerves in anaesthetised rats. Journal of Physiology, 2003, 552, 589-601.	1.3	44
123	Neural Regulation of Endothelial Cell-Mediated Inflammation. Journal of Investigative Dermatology Symposium Proceedings, 2000, 5, 74-78.	0.8	43
124	Agonists of proteinase-activated receptor 2 excite guinea pig ileal myenteric neurons. European Journal of Pharmacology, 2001, 431, 311-314.	1.7	43
125	Proteinase-activated Receptor-2 Induces Cyclooxygenase-2 Expression through \hat{l}^2 -Catenin and Cyclic AMP-response Element-binding Protein. Journal of Biological Chemistry, 2008, 283, 809-815.	1.6	42
126	Protease-activated receptors: the role of cell-surface proteolysis in signalling. Essays in Biochemistry, 2002, 38, 169-183.	2.1	42

#	Article	IF	Citations
127	The third intracellular loop and carboxyl tail of neurokinin 1 and 3 receptors determine interactions with \hat{l}^2 -arrestins. American Journal of Physiology - Cell Physiology, 2003, 285, C945-C958.	2.1	41
128	Protein kinase C-mediated desensitization of the neurokinin 1 receptor. American Journal of Physiology - Cell Physiology, 2001, 280, C1097-C1106.	2.1	40
129	Deletion of neutral endopeptidase exacerbates intestinal inflammation induced by <i>Clostridium difficile</i> toxin A. American Journal of Physiology - Renal Physiology, 2001, 281, G544-G551.	1.6	40
130	Proteinase-Activated Receptor-2: Physiological and Pathophysiological Roles. Current Medicinal Chemistry Cardiovascular and Hematological Agents, 2003, 1, 61-72.	1.7	40
131	CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice. Journal of Clinical Investigation, 2011, 121, 3144-3158.	3.9	40
132	Activation of Mu Opioid Receptors Sensitizes Transient Receptor Potential Vanilloid Type 1 (TRPV1) via \hat{l}^2 -Arrestin-2-Mediated Cross-Talk. PLoS ONE, 2014, 9, e93688.	1.1	39
133	P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells. Journal of Biological Chemistry, 2015, 290, 29051-29062.	1.6	39
134	Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons. Journal of Biological Chemistry, 2013, 288, 25689-25700.	1.6	35
135	Legumain is activated in macrophages during pancreatitis. American Journal of Physiology - Renal Physiology, 2016, 311, G548-G560.	1.6	35
136	A Role for Calcitonin Gene-Related Peptide in Protection Against Gastric Ulceration. Annals of Surgery, 1994, 219, 58-64.	2.1	34
137	Postsecretory Metabolism of Peptides. The American Review of Respiratory Disease, 1987, 136, S27-S34.	2.9	33
138	Neurokinin 1 receptor distribution in cholinergic neurons and targets of substance P terminals in the rat nucleus accumbens. Journal of Comparative Neurology, 2000, 423, 500-511.	0.9	33
139	Endothelin-Converting Enzyme-1 Degrades Internalized Somatostatin-14. Endocrinology, 2008, 149, 2200-2207.	1.4	33
140	Human mast cell proteases hydrolyze neurotensin, kinetensin and Leu5-enkephalin. Peptides, 1991, 12, 995-1000.	1.2	32
141	Legumain Induces Oral Cancer Pain by Biased Agonism of Protease-Activated Receptor-2. Journal of Neuroscience, 2021, 41, 193-210.	1.7	32
142	Somatostatin inhibits pancreatic exocrine secretion via a neural mechanism. Metabolism: Clinical and Experimental, 1990, 39, 143-148.	1.5	31
143	Characterization of receptors using cyanine 3-labeled neuropeptides. Peptides, 1995, 16, 733-740.	1.2	31
144	Endothelinâ€converting enzymeâ€1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. Journal of Physiology, 2011, 589, 5213-5230.	1.3	31

#	Article	IF	CITATIONS
145	Neurotensin-induced Proinflammatory Signaling in Human Colonocytes Is Regulated by \hat{l}^2 -Arrestins and Endothelin-converting Enzyme-1-dependent Endocytosis and Resensitization of Neurotensin Receptor 1. Journal of Biological Chemistry, 2012, 287, 15066-15075.	1.6	31
146	Proteolytic Activation of the Human Epithelial Sodium Channel by Trypsin IV and Trypsin I Involves Distinct Cleavage Sites. Journal of Biological Chemistry, 2014, 289, 19067-19078.	1.6	31
147	Serine proteases mediate inflammatory pain in acute pancreatitis. American Journal of Physiology - Renal Physiology, 2011, 300, G1033-G1042.	1.6	30
148	Endothelin-Converting Enzyme-1 Actions Determine Differential Trafficking and Signaling of Corticotropin-Releasing Factor Receptor 1 at High Agonist Concentrations. Molecular Endocrinology, 2012, 26, 681-695.	3.7	30
149	Stress activates pronociceptive endogenous opioid signalling in DRG neurons during chronic colitis. Gut, 2017, 66, 2121-2131.	6.1	30
150	Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of proteaseâ€activated receptor 2. Journal of Comparative Neurology, 2009, 516, 141-156.	0.9	29
151	G-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. Journal of Immunology, 2017, 198, 3565-3575.	0.4	28
152	Agonist that activates the $\hat{A}\mu$ -opioid receptor in acidified microenvironments inhibits colitis pain without side effects. Gut, 2022, 71, 695-704.	6.1	28
153	Human Corneal Epithelial Cells Express Functional PAR-1 and PAR-2., 2003, 44, 99.		27
154	Peripheral Nerve Resident Macrophages and Schwann Cells Mediate Cancer-Induced Pain. Cancer Research, 2021, 81, 3387-3401.	0.4	27
155	Nanotechnology for pain management: Current and future therapeutic interventions. Nano Today, 2021, 39, 101223.	6.2	27
156	Differences in Receptor Binding and Stability to Enzymatic Digestion Between CCK-8 and CCK-58. Pancreas, 2002, 25, e50-e55.	0.5	25
157	Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor. American Journal of Physiology - Cell Physiology, 2011, 301, C780-C791.	2.1	24
158	Neutral Endopeptidase Determines the Severity of Pancreatitis-Associated Lung Injury1. Journal of Surgical Research, 2005, 128, 21-27.	0.8	23
159	Evidence that PAR-1 and PAR-2 mediate prostanoid-dependent contraction in isolated guinea-pig gallbladder. British Journal of Pharmacology, 2000, 131, 689-694.	2.7	22
160	Application of a chemical probe to detect neutrophil elastase activation during inflammatory bowel disease. Scientific Reports, 2019, 9, 13295.	1.6	22
161	G-Protein–Coupled Receptors Are Dynamic Regulators of Digestion and Targets for Digestive Diseases. Gastroenterology, 2019, 156, 1600-1616.	0.6	22
162	Tachykinins contract the circular muscle of the human esophageal body in vitro via NK2 receptors. Gastroenterology, 1993, 105, 981-987.	0.6	21

#	Article	IF	CITATIONS
163	Endothelin-converting Enzyme 1 and \hat{l}^2 -Arrestins Exert Spatiotemporal Control of Substance P-induced Inflammatory Signals. Journal of Biological Chemistry, 2014, 289, 20283-20294.	1.6	21
164	Distribution and trafficking of the $\hat{1}$ /4-opioid receptor in enteric neurons of the guinea pig. American Journal of Physiology - Renal Physiology, 2016, 311, G252-G266.	1.6	21
165	Revised guidelines to enhance the rigor and reproducibility of research published in American Physiological Society journals. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1251-R1253.	0.9	21
166	Targeting G protein-coupled receptors for the treatment of chronic pain in the digestive system. Gut, 2021, 70, 970-981.	6.1	21
167	Inflammation-associated changes in DOR expression and function in the mouse colon. American Journal of Physiology - Renal Physiology, 2018, 315, G544-G559.	1.6	20
168	Catabolism of substance P and neurotensin in the rat stomach wall is susceptible to inhibitors of angiotensin converting enzyme. Regulatory Peptides, 1986, 14, 21-31.	1.9	19
169	The stressed gut: Contributions of intestinal stress peptides to inflammation and motility. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7409-7410.	3.3	19
170	Protein Kinase D and $G\hat{I}^2\hat{I}^3$ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. Journal of Biological Chemistry, 2016, 291, 11285-11299.	1.6	19
171	Substance P inhibits pancreatic exocrine secretion via a neural mechanism. American Journal of Physiology - Renal Physiology, 1999, 277, G314-G320.	1.6	17
172	Application of a Sulfoxonium Ylide Electrophile to Generate Cathepsin X-Selective Activity-Based Probes. ACS Chemical Biology, 2020, 15, 718-727.	1.6	17
173	A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes. Journal of Biological Chemistry, 2021, 296, 100345.	1.6	17
174	Cathepsin S Evokes PAR2-Dependent Pain in Oral Squamous Cell Carcinoma Patients and Preclinical Mouse Models. Cancers, 2021, 13, 4697.	1.7	17
175	Trafficking and Signaling of G Protein-Coupled Receptors in the Nervous System: Implications for Disease and Therapy. CNS and Neurological Disorders - Drug Targets, 2010, 9, 539-556.	0.8	17
176	Oral cancer induced TRPV1 sensitization is mediated by PAR2 signaling in primary afferent neurons innervating the cancer microenvironment. Scientific Reports, 2022, 12, 4121.	1.6	17
177	Expression of the neurokinin type 1 receptor in the human colon. Autonomic Neuroscience: Basic and Clinical, 2006, 124, 9-17.	1.4	16
178	Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain. Biomaterials, 2022, 285, 121536.	5.7	16
179	Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system. American Journal of Physiology - Renal Physiology, 2015, 309, G248-G259.	1.6	15
180	NK-1 receptor desensitization and neutral endopeptidase terminate SP-induced pancreatic plasma extravasation. American Journal of Physiology - Renal Physiology, 2000, 279, G726-G732.	1.6	14

#	Article	IF	CITATIONS
181	Mice expressing fluorescent PAR ₂ reveal that endocytosis mediates colonic inflammation and pain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
182	Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochemical Society Transactions, 2013, 41, 137-143.	1.6	13
183	Proteinase-Activated Receptors: New Functions for Old Enzymes. Physiology, 1998, 13, 231-240.	1.6	12
184	Agonists of protease-activated receptors 1 and 2 stimulate electrolyte secretion from mouse gallbladder. American Journal of Physiology - Renal Physiology, 2007, 293, G335-G346.	1.6	12
185	Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon. Cell and Tissue Research, 2014, 356, 319-332.	1.5	11
186	Neurotensin-induced miR-133 \hat{l} ± expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin. Scientific Reports, 2016, 6, 22195.	1.6	11
187	The transient receptor potential vanilloid 4 (TRPV4) ion channel mediates protease activated receptor 1 (PAR1)-induced vascular hyperpermeability. Laboratory Investigation, 2020, 100, 1057-1067.	1.7	11
188	Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. American Journal of Physiology - Renal Physiology, 2022, 322, G201-G222.	1.6	11
189	Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system. American Journal of Physiology - Renal Physiology, 2014, 306, G686-G698.	1.6	10
190	Protein kinase D and $G\hat{l}^2\hat{l}^3$ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. Journal of Biological Chemistry, 2019, 294, 10649-10662.	1.6	10
191	Bile acids inhibit cholinergic constriction in proximal and peripheral airways from humans and rodents. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L264-L275.	1.3	10
192	Catabolism of substance P in the stomach wall of the rat. Life Sciences, 1985, 37, 599-606.	2.0	9
193	G Protein-Coupled Receptor Trafficking and Signalling in the Enteric Nervous System: The Past, Present and Future. Advances in Experimental Medicine and Biology, 2016, 891, 145-152.	0.8	9
194	Catabolism of bombesin in the interstitial fluid of the rat stomach. Neuropeptides, 1983, 4, 55-64.	0.9	8
195	Catabolism of neurotensin in the epithelial layer of porcine small intestine. Biochimica Et Biophysica Acta - General Subjects, 1987, 924, 167-174.	1.1	8
196	Recombinant human neutral endopeptidase ameliorates pancreatic elastase–induced lung injury. Surgery, 2002, 132, 193-199.	1.0	8
197	Serotonin-induced vascular permeability is mediated by transient receptor potential vanilloid 4 in the airways and upper gastrointestinal tract of mice. Laboratory Investigation, 2021, 101, 851-864.	1.7	8
198	Selective Release of Somatostatin by Calcitonin Gene?Related Peptide and Influence on Pancreatic Secretion. Annals of the New York Academy of Sciences, 1992, 657, 289-298.	1.8	6

#	Article	IF	CITATIONS
199	G Protein-Coupled Receptor Signaling: Implications for the Digestive System. Digestive Diseases, 1997, 15, 207-242.	0.8	5
200	A role for proteinase-activated receptor-1 in inflammatory bowel diseases. Journal of Clinical Investigation, 2006, 116, 2056-2056.	3.9	5
201	Detection of naturally expressed receptors for gastrin-releasing peptide and tachykinins using cyanine 3-labelled neuropeptides. The Histochemical Journal, 1996, 28, 811-826.	0.6	4
202	Sez6 levels are elevated in cerebrospinal fluid of patients with inflammatory pain–associated conditions. Pain Reports, 2019, 4, e719.	1.4	4
203	II. Regulation of neuropeptide receptors in enteric neurons. American Journal of Physiology - Renal Physiology, 1998, 274, G792-G796.	1.6	3
204	Opioid-induced pronociceptive signaling in the gastrointestinal tract is mediated by delta-opioid receptor signaling Journal of Neuroscience, 2022, , JN-RM-2098-21.	1.7	3
205	Targeting of Transient Receptor Potential Channels in Digestive Disease., 2015,, 385-403.		2
206	TGR5 agonists induce peripheral and central hypersensitivity to bladder distension. Scientific Reports, 2022, 12, .	1.6	2
207	Catabolism of substance P in the rat stomach. Biochemical Society Transactions, 1985, 13, 176-177.	1.6	1
208	Neurokinin 1 receptor distribution in cholinergic neurons and targets of substance P terminals in the rat nucleus accumbens., 2000, 423, 500.		1
209	Cell Surface Receptors: Mechanisms of Signaling and Inactivation. , 1999, , 7-28.		1
210	Transmembrane Signaling by G Protein–Coupled Receptors. , 2006, , 63-90.		0
211	Protease-Activated Receptors in Gastrointestinal Function and Disease. , 2006, , 1-31.		O
212	Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. Journal of Comparative Neurology, 2008,	0.9	0
213	507, spc1-spc1. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. Journal of Comparative Neurology, 2008, 507. spc1-spc1.	0.9	O
214	Localization and identification of protease activity in acute pancreatitis using in vivo molecular imaging. Journal of the American College of Surgeons, 2010, 211, S11-S12.	0.2	0
215	Endothelinâ€converting enzymeâ€1 (ECEâ€1)â€dependent trafficking of corticotropinâ€releasing factor receptor 1 (CRFâ€R 1) FASEB Journal, 2010, 24, lb652.	0.2	O
216	Mechanisms That Attenuate Signaling By Regulatory Peptides. , 1999, , 65-100.		0

#	Article	IF	CITATIONS
217	Arrestin-mediated trafficking and compartmentalized biology of GPCRs., 2022,, 9-24.		O