## Caterina E Ducati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8792365/publications.pdf

Version: 2024-02-01

189 papers 17,326 citations

18482 62 h-index 128 g-index

197 all docs

197 docs citations

197 times ranked

23345 citing authors

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Manipulating Color Emission in 2D Hybrid Perovskites by Fine Tuning Halide Segregation: A Transparent Green Emitter. Advanced Materials, 2022, 34, e2105942.                                                                        | 21.0 | 24        |
| 2  | Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part I, Reducing Reconstruction Bias. Microscopy and Microanalysis, 2022, 28, 338-349.                                                        | 0.4  | 7         |
| 3  | Optical emission from focused ion beam milled halide perovskite device crossâ€sections. Microscopy<br>Research and Technique, 2022, 85, 2351-2355.                                                                                  | 2.2  | 7         |
| 4  | Unveiling the Interaction Mechanisms of Electron and Xâ€ray Radiation with Halide Perovskite Semiconductors using Scanning Nanoprobe Diffraction. Advanced Materials, 2022, 34, e2200383.                                           | 21.0 | 13        |
| 5  | Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part II. Uncertainty Intervals. Microscopy and Microanalysis, 2022, 28, 723-731.                                                              | 0.4  | 3         |
| 6  | Aerosol Jet Printing as a Versatile Sample Preparation Method for <i>Operando</i> Electrochemical TEM Microdevices. Advanced Materials Interfaces, 2022, 9, .                                                                       | 3.7  | 1         |
| 7  | Deciphering the <i>In Situ</i> Surface Reconstruction of Supercapacitive Bimetallic Ni-Co Oxyphosphide during Electrochemical Activation Using Multivariate Statistical Analyses. ACS Applied Energy Materials, 2022, 5, 7661-7673. | 5.1  | 12        |
| 8  | Nanometric Chemical Analysis of Beamâ€Sensitive Materials: A Case Study of STEMâ€EDX on Perovskite Solar Cells. Small Methods, 2021, 5, e2000835.                                                                                   | 8.6  | 19        |
| 9  | Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layer. Nano Energy, 2021, 82, 105685.                                                                                           | 16.0 | 28        |
| 10 | Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nature Materials, 2021, 20, 84-92.                                                                                                 | 27.5 | 349       |
| 11 | Improved Electrical Performance of Perovskite Photovoltaic Miniâ€Modules through Controlled Pbl <sub>2</sub> Formation Using Nanosecond Laser Pulses for P3 Patterning. Energy Technology, 2021, 9, 2000969.                        | 3.8  | 19        |
| 12 | Aerosol Assisted Solvent Treatment: A Universal Method for Performance and Stability Enhancements in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101420.                                                          | 19.5 | 21        |
| 13 | The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23582-23596.                                                                   | 10.3 | 17        |
| 14 | Nonâ€Equilibrium Synthesis of Highly Active Nanostructured, Oxygenâ€Incorporated Amorphous<br>Molybdenum Sulfide HER Electrocatalyst. Small, 2020, 16, e2004047.                                                                    | 10.0 | 29        |
| 15 | Comparison of the ionic conductivity properties of microporous and mesoporous MOFs infiltrated with a Na-ion containing IL mixture. Dalton Transactions, 2020, 49, 15914-15924.                                                     | 3.3  | 20        |
| 16 | Elucidating and Mitigating Degradation Processes in Perovskite Lightâ€Emitting Diodes. Advanced Energy Materials, 2020, 10, 2002676.                                                                                                | 19.5 | 28        |
| 17 | Upscaling Inverted Perovskite Solar Cells: Optimization of Laser Scribing for Highly Efficient Mini-Modules. Micromachines, 2020, 11, 1127.                                                                                         | 2.9  | 42        |
| 18 | lon Migrationâ€Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar<br>Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000310.                                                            | 19.5 | 103       |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nature Communications, 2020, 11, 891.                                                                                                                          | 12.8 | 83        |
| 20 | Transparent Films Made of Highly Scattering Particles. Langmuir, 2020, 36, 911-918.                                                                                                                                                                     | 3.5  | 4         |
| 21 | Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature, 2020, 580, 360-366.                                                                                                                                      | 27.8 | 255       |
| 22 | Stability and Dark Hysteresis Correlate in NiOâ€Based Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901642.                                                                                                                              | 19.5 | 69        |
| 23 | Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap<br>States, Vertical Stratification, and Exciton Dissociation. Advanced Energy Materials, 2019, 9, 1902145.                                                | 19.5 | 36        |
| 24 | Electron Microscopy Characterization of P3 Lines and Laser Scribing-Induced Perovskite Decomposition in Perovskite Solar Modules. ACS Applied Materials & Interfaces, 2019, 11, 45646-45655.                                                            | 8.0  | 21        |
| 25 | Controlling the Growth Kinetics and Optoelectronic Properties of 2D/3D Lead–Tin Perovskite<br>Heterojunctions. Advanced Materials, 2019, 31, e1905247.                                                                                                  | 21.0 | 36        |
| 26 | Effect of Size on the Luminescent Efficiency of Perovskite Nanocrystals. ACS Applied Energy Materials, 2019, 2, 6998-7004.                                                                                                                              | 5.1  | 7         |
| 27 | Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar<br>Modules. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25195-25204.                                                                            | 8.0  | 53        |
| 28 | Selfâ€Assembly of rGO Coated Nanorods into Aligned Thick Films. Advanced Materials Interfaces, 2019, 6, 1900219.                                                                                                                                        | 3.7  | 0         |
| 29 | Synthesis, Characterization, and Morphological Control of Cs <sub>2</sub> CuCl <sub>4</sub> Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 16951-16956.                                                                                      | 3.1  | 38        |
| 30 | Bulk synthesis of graphene-like materials possessing turbostratic graphite and graphene nanodomains via combustion of magnesium in carbon dioxide. Carbon, 2019, 149, 582-586.                                                                          | 10.3 | 8         |
| 31 | Nanostructure of Gasification Charcoal (Biochar). Environmental Science & Emp; Technology, 2019, 53, 3538-3546.                                                                                                                                         | 10.0 | 20        |
| 32 | Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction. Nano Research, 2019, 12, 939-946.                                                                                                       | 10.4 | 3         |
| 33 | Organic Solar Cells: Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation (Adv. Energy Mater. 47/2019). Advanced Energy Materials, 2019, 9, 1970185. | 19.5 | 1         |
| 34 | Emission Properties and Ultrafast Carrier Dynamics of CsPbCl <sub>3</sub> Perovskite Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 2651-2657.                                                                                               | 3.1  | 21        |
| 35 | Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy, 2018, 47, 243-256.                                                                                                                  | 16.0 | 67        |
| 36 | Continuous flow chemical vapour deposition of carbon nanotube sea urchins. Nanoscale, 2018, 10, 7780-7791.                                                                                                                                              | 5.6  | 6         |

3

| #  | Article                                                                                                                                                                                                                                  | IF          | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 37 | Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555, 497-501.                                                                                                                  | 27.8        | 1,336     |
| 38 | Unveiling the Chemical Composition of Halide Perovskite Films Using Multivariate Statistical Analyses. ACS Applied Energy Materials, 2018, 1, 7174-7181.                                                                                 | 5.1         | 31        |
| 39 | Potassium- and Rubidium-Passivated Alloyed Perovskite Films: Optoelectronic Properties and Moisture Stability. ACS Energy Letters, 2018, 3, 2671-2678.                                                                                   | 17.4        | 126       |
| 40 | Analyzing the Photo-oxidation of 2-propanol at Indoor Air Level Concentrations Using Field Asymmetric Ion Mobility Spectrometry. Journal of Visualized Experiments, 2018, , .                                                            | 0.3         | 1         |
| 41 | Attaining High Photovoltaic Efficiency and Stability with Multidimensional Perovskites. ChemSusChem, 2018, 11, 4193-4202.                                                                                                                | 6.8         | 16        |
| 42 | Integration of plasmonic Au nanoparticles in TiO2 hierarchical structures in a single-step pulsed laser co-deposition. Materials and Design, 2018, 156, 311-319.                                                                         | 7.0         | 49        |
| 43 | Hyperbranched TiO <sub>2</sub> –CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes. Nanotechnology, 2018, 29, 335404.                                                                                       | 2.6         | 16        |
| 44 | Photon Reabsorption in Mixed CsPbCl <sub>3</sub> :CsPbI <sub>3</sub> Perovskite Nanocrystal Films for Light-Emitting Diodes. Journal of Physical Chemistry C, 2017, 121, 3790-3796.                                                      | 3.1         | 57        |
| 45 | Increased Affinity of Small Gold Particles for Glycerol Oxidation over Au/TiO <sub>2</sub> Probed by NMR Relaxation Methods. ACS Catalysis, 2017, 7, 4235-4241.                                                                          | 11.2        | 43        |
| 46 | Towards an electronic grade nanoparticle-assembled silicon thin film by ballistic deposition at room temperature: the deposition method, and structural and electronic properties. Journal of Materials Chemistry C, 2017, 5, 3725-3735. | <b>5.</b> 5 | 19        |
| 47 | Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nature Communications, 2017, 8, 1202.                                                                                   | 12.8        | 324       |
| 48 | Tuning the photoelectrochemical properties of hierarchical TiO2 nanostructures by control of pulsed laser deposition and annealing in reducing conditions. International Journal of Hydrogen Energy, 2017, 42, 26639-26651.              | 7.1         | 5         |
| 49 | A Pralineâ€Like Flexible Interlayer with Highly Mounted Polysulfide Anchors for Lithium–Sulfur<br>Batteries. Small, 2017, 13, 1700357.                                                                                                   | 10.0        | 37        |
| 50 | Chemical vapour deposition of freestanding sub-60 nm graphene gyroids. Applied Physics Letters, 2017, 111, .                                                                                                                             | 3.3         | 18        |
| 51 | 3D Visualization of the Iron Oxidation State in FeO/Fe <sub>3</sub> O <sub>4</sub> Core–Shell Nanocubes from Electron Energy Loss Tomography. Nano Letters, 2016, 16, 5068-5073.                                                         | 9.1         | 56        |
| 52 | Li-S-Batteries: Advanced Lithium-Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush (Adv. Funct. Mater. 46/2016). Advanced Functional Materials, 2016, 26, 8564-8564.                                               | 14.9        | 4         |
| 53 | Highly Efficient Perovskite Nanocrystal Lightâ€Emitting Diodes Enabled by a Universal Crosslinking Method. Advanced Materials, 2016, 28, 3528-3534.                                                                                      | 21.0        | 782       |
| 54 | Blind source separation aided characterization of the $\hat{1}^3 \hat{a} \in \mathbb{R}^2$ strengthening phase in an advanced nickel-based superalloy by spectroscopic 4D electron microscopy. Acta Materialia, 2016, 107, 229-238.      | 7.9         | 16        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | In Situ Heat-Induced Replacement of GaAs Nanowires by Au. Nano Letters, 2016, 16, 3051-3057.                                                                                                                 | 9.1  | 21        |
| 56 | Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 2016, 30, 162-172.                                                                                                 | 16.0 | 258       |
| 57 | Elemental Mapping of Perovskite Solar Cells by Using Multivariate Analysis: An Insight into Degradation Processes. ChemSusChem, 2016, 9, 2673-2678.                                                          | 6.8  | 21        |
| 58 | Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams. Physical Review B, 2016, 93, .                                                             | 3.2  | 16        |
| 59 | Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-2901.                                                                                                  | 30.8 | 372       |
| 60 | Advanced Lithium–Sulfur Batteries Enabled by a Bioâ€Inspired Polysulfide Adsorptive Brush. Advanced Functional Materials, 2016, 26, 8418-8426.                                                               | 14.9 | 120       |
| 61 | Compressed sensing electron tomography of needle-shaped biological specimens – Potential for improved reconstruction fidelity with reduced dose. Ultramicroscopy, 2016, 160, 230-238.                        | 1.9  | 47        |
| 62 | Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes. Journal of the American Chemical Society, 2016, 138, 7918-7931.                                                                 | 13.7 | 189       |
| 63 | Local Versus Longâ€Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic–Inorganic Lead Halide Perovskites. Advanced Science, 2015, 2, 1500136.                               | 11.2 | 50        |
| 64 | Photoluminescence: Local Versus Long-Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic-Inorganic Lead Halide Perovskites (Adv. Sci. 9/2015). Advanced Science, 2015, 2, . | 11.2 | 3         |
| 65 | Overcoming Traditional Challenges in Nano-scale X-ray Characterization Using Independent Component Analysis. Microscopy and Microanalysis, 2015, 21, 1227-1228.                                              | 0.4  | 0         |
| 66 | Quasi-1D hyperbranched WO <sub>3</sub> nanostructures for low-voltage photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3, 6110-6117.                                            | 10.3 | 41        |
| 67 | Producing hierarchical porous carbon monoliths from hydrometallurgical recycling of spent lead acid battery for application in lithium ion batteries. Green Chemistry, 2015, 17, 4637-4646.                  | 9.0  | 22        |
| 68 | Investigating the photo-oxidation of model indoor air pollutants using field asymmetric ion mobility spectrometry. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 312, 1-7.                  | 3.9  | 10        |
| 69 | Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles. Journal Physics D: Applied Physics, 2015, 48, 265302.            | 2.8  | 11        |
| 70 | Multicomponent Signal Unmixing from Nanoheterostructures: Overcoming the Traditional Challenges of Nanoscale X-ray Analysis via Machine Learning. Nano Letters, 2015, 15, 2716-2720.                         | 9.1  | 49        |
| 71 | Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nature Communications, 2015, 6, 8259.                                                    | 12.8 | 120       |
| 72 | Interface and Composition Analysis on Perovskite Solar Cells. ACS Applied Materials & Diterfaces, 2015, 7, 26176-26183.                                                                                      | 8.0  | 107       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Perovskite Crystals for Tunable White Light Emission. Chemistry of Materials, 2015, 27, 8066-8075.                                                                                                                                                                                                                                                         | 6.7  | 362       |
| 74 | Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%.<br>Nano Letters, 2015, 15, 7987-7993.                                                                                                                                                                                                                      | 9.1  | 130       |
| 75 | Hybrid glasses from strong and fragile metal-organic framework liquids. Nature Communications, 2015, 6, 8079.                                                                                                                                                                                                                                              | 12.8 | 242       |
| 76 | The real TiO <sub>2</sub> /HTM interface of solid-state dye solar cells: role of trapped states from a multiscale modelling perspective. Nanoscale, 2015, 7, 1136-1144.                                                                                                                                                                                    | 5.6  | 30        |
| 77 | Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D. Advanced Functional Materials, 2014, 24, 3043-3050.                                                                                                                                                                                                                                          | 14.9 | 16        |
| 78 | Multiscale simulation of solid state dye sensitized solar cells including morphology effects. , 2014, , .                                                                                                                                                                                                                                                  |      | 1         |
| 79 | Nickel nanoparticles effect on the electrochemical energy storage properties of carbon nanocomposite films. Nanotechnology, 2014, 25, 435401.                                                                                                                                                                                                              | 2.6  | 14        |
| 80 | Twin Plane Re-entrant Mechanism for Catalytic Nanowire Growth. Nano Letters, 2014, 14, 1288-1292.                                                                                                                                                                                                                                                          | 9.1  | 41        |
| 81 | Hydrogen production by photocatalytic membranes fabricated by supersonic cluster beam deposition on glass fiber filters. International Journal of Hydrogen Energy, 2014, 39, 13098-13104.                                                                                                                                                                  | 7.1  | 14        |
| 82 | Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale, 2014, 6, 5746-5753.                                                                                                                                                                        | 5.6  | 166       |
| 83 | Exploring the benefits of electron tomography to characterize the precise morphology of core–shell Au@Ag nanoparticles and its implications on their plasmonic properties. Nanoscale, 2014, 6, 12696-12702.                                                                                                                                                | 5.6  | 16        |
| 84 | Transformation of molten SnCl2 to SnO2 nano-single crystals. Ceramics International, 2014, 40, 8533-8538.                                                                                                                                                                                                                                                  | 4.8  | 34        |
| 85 | Catalyst Composition and Impurity-Dependent Kinetics of Nanowire Heteroepitaxy. ACS Nano, 2013, 7, 7689-7697.                                                                                                                                                                                                                                              | 14.6 | 11        |
| 86 | In Situ Observation of the Effect of Nitrogen on Carbon Nanotube Synthesis. Chemistry of Materials, 2013, 25, 2921-2923.                                                                                                                                                                                                                                   | 6.7  | 26        |
| 87 | Nanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: A short surveyNanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: A short surveyretain->. Progress in Natural Science: Materials International, 2013, 23, 222-234. | 4.4  | 25        |
| 88 | Hierarchical bicontinuous porosity in metal–organic frameworks templated from functional block co-oligomer micelles. Chemical Science, 2013, 4, 3573.                                                                                                                                                                                                      | 7.4  | 124       |
| 89 | Low temperature crystallisation of mesoporous TiO2. Nanoscale, 2013, 5, 10518.                                                                                                                                                                                                                                                                             | 5.6  | 19        |
| 90 | Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature, 2013, 502, 80-84.                                                                                                                                                                                                                                        | 27.8 | 450       |

| #   | Article                                                                                                                                                                             | IF            | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 91  | Self-Cleaning Antireflective Optical Coatings. Nano Letters, 2013, 13, 5329-5335.                                                                                                   | 9.1           | 155       |
| 92  | Polymer Crystallization as a Tool To Pattern Hybrid Nanostructures: Growth of 12 nm ZnO Arrays in Poly(3-hexylthiophene). Nano Letters, 2013, 13, 4499-4504.                        | 9.1           | 27        |
| 93  | Tantalum-oxide catalysed chemical vapour deposition of single- and multi-walled carbon nanotubes. RSC Advances, 2013, 3, 4086.                                                      | 3.6           | 15        |
| 94  | Giant and reversible extrinsic magnetocaloric effects in LaO.7CaO.3MnO3 films due to strain. Nature Materials, 2013, 12, 52-58.                                                     | 2 <b>7.</b> 5 | 226       |
| 95  | Porosity in a single crystal. Nature, 2013, 495, 180-181.                                                                                                                           | 27.8          | 16        |
| 96  | Carbon with hierarchical pores from carbonized metal–organic frameworks for lithium sulphur batteries. Chemical Communications, 2013, 49, 2192.                                     | 4.1           | 354       |
| 97  | Some Turning Points in the Chemical Electron Microscopic Study of Heterogeneous Catalysts. ChemCatChem, 2013, 5, 2560-2579.                                                         | 3.7           | 25        |
| 98  | Hyperbranched Quasi-1D Nanostructures for Solid-State Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 10023-10031.                                                                   | 14.6          | 65        |
| 99  | Correlating Microstructure and Activity for Polysulfide Reduction and Oxidation at WS2Electrocatalysts. Journal of the Electrochemical Society, 2013, 160, A757-A768.               | 2.9           | 23        |
| 100 | Highâ€density remote plasma sputtering of highâ€dielectricâ€constant amorphous hafnium oxide films. Physica Status Solidi (B): Basic Research, 2013, 250, 957-967.                  | 1.5           | 25        |
| 101 | Metastable Crystalline AuGe Catalysts Formed During Isothermal Germanium Nanowire Growth. Physical Review Letters, 2012, 108, 255702.                                               | 7.8           | 26        |
| 102 | The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth. Chemistry of Materials, 2012, 24, 4633-4640.                                                                | 6.7           | 180       |
| 103 | Vertically Oriented TiO <sub><i>x</i></sub> N <sub><i>y</i></sub> Nanopillar Arrays with Embedded Ag Nanoparticles for Visible-Light Photocatalysis. Langmuir, 2012, 28, 5427-5431. | 3.5           | 13        |
| 104 | The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu. Journal of Physical Chemistry C, 2012, 116, 22492-22501.                                           | 3.1           | 155       |
| 105 | DNA Origami Nanopores. Nano Letters, 2012, 12, 512-517.                                                                                                                             | 9.1           | 267       |
| 106 | Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion. Nanotechnology, 2012, 23, 475101.                                         | 2.6           | 43        |
| 107 | High-rate production of functional nanostructured films and devices by coupling flame spray pyrolysis with supersonic expansion. Nanotechnology, 2012, 23, 185603.                  | 2.6           | 23        |
| 108 | Multiwalled carbon nanotubes functionalized with maleated poly(propylene) by a dry mechano-chemical process. Polymer, 2012, 53, 291-299.                                            | 3.8           | 35        |

| #   | Article                                                                                                                                                                                                  | IF   | Citations |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO <sub>2</sub> crystallisation. Energy and Environmental Science, 2011, 4, 225-233.                               | 30.8 | 88        |
| 110 | Cyclic Supersaturation and Triple Phase Boundary Dynamics in Germanium Nanowire Growth. Journal of Physical Chemistry C, 2011, 115, 4413-4417.                                                           | 3.1  | 111       |
| 111 | Supportâ^'Catalystâ^'Gas Interactions during Carbon Nanotube Growth on Metallic Ta Films. Journal of Physical Chemistry C, 2011, 115, 4359-4369.                                                         | 3.1  | 60        |
| 112 | In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth. Nano Letters, 2011, 11, 4154-4160.                                                                                      | 9.1  | 258       |
| 113 | Use of plasma treatment to grow carbon nanotube forests on TiN substrate. Journal of Applied Physics, 2011, 109, .                                                                                       | 2.5  | 37        |
| 114 | Hafnia nanoparticles – a model system for graphene growth on a dielectric. Physica Status Solidi - Rapid Research Letters, 2011, 5, 341-343.                                                             | 2.4  | 25        |
| 115 | Catalyst design for the growth of highly packed nanotube forests. Physica Status Solidi (B): Basic Research, 2011, 248, 2528-2531.                                                                       | 1.5  | 8         |
| 116 | Nanostructured Refractory Metal Oxide Films Produced by a Pulsed Microplasma Cluster Source as Active Layers in Microfabricated Gas Sensors. Japanese Journal of Applied Physics, 2011, 50, 01AK01.      | 1.5  | 7         |
| 117 | Growth of Ultrahigh Density Vertically Aligned Carbon Nanotube Forests for Interconnects. ACS Nano, 2010, 4, 7431-7436.                                                                                  | 14.6 | 136       |
| 118 | SnO <sub>2</sub> -Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Letters, 2010, 10, 1259-1265.                                    | 9.1  | 495       |
| 119 | Formation of Metastable Liquid Catalyst during Subeutectic Growth of Germanium Nanowires. Nano<br>Letters, 2010, 10, 2972-2976.                                                                          | 9.1  | 65        |
| 120 | Hierarchical assemblies of bismuth titanate complex architectures and their visible-light photocatalytic activities. Journal of Materials Chemistry, 2010, 20, 2418.                                     | 6.7  | 69        |
| 121 | Hierarchical TiO <sub>2</sub> Photoanode for Dye-Sensitized Solar Cells. Nano Letters, 2010, 10, 2562-2567.                                                                                              | 9.1  | 331       |
| 122 | Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO2. Journal of Materials Chemistry, 2010, 20, 1261-1268.                                          | 6.7  | 40        |
| 123 | Nanostructured high valence silver oxide produced by pulsed laser deposition. Applied Surface Science, 2009, 255, 5248-5251.                                                                             | 6.1  | 34        |
| 124 | Integration of a technique for the deposition of nanostructured films with MEMS-based microfabrication technologies: Application to micro gas sensors. Microelectronic Engineering, 2009, 86, 1247-1249. | 2.4  | 11        |
| 125 | Efficient ZnO Nanowire Solid-State Dye-Sensitized Solar Cells Using Organic Dyes and Coreâ´'shell Nanostructures. Journal of Physical Chemistry C, 2009, 113, 18515-18522.                               | 3.1  | 85        |
| 126 | Block copolymer directed synthesis of mesoporous TiO2for dye-sensitized solar cells. Soft Matter, 2009, 5, 134-139.                                                                                      | 2.7  | 108       |

| #   | Article                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Growth of high-density vertically aligned arrays of carbon nanotubes by plasma-assisted catalyst pretreatment. Applied Physics Letters, 2009, 95, .                               | 3.3  | 43        |
| 128 | Solution-phase synthesis of single-crystalline Bi12TiO20 nanowires with photocatalytic properties. Chemical Communications, 2009, , 3937.                                         | 4.1  | 62        |
| 129 | A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters, 2009, 9, 2807-2812.                                                                                                 | 9.1  | 446       |
| 130 | State of Transition Metal Catalysts During Carbon Nanotube Growth. Journal of Physical Chemistry C, 2009, 113, 1648-1656.                                                         | 3.1  | 166       |
| 131 | Block Copolymer Morphologies in Dye-Sensitized Solar Cells: Probing the Photovoltaic Structureâ^'Function Relation. Nano Letters, 2009, 9, 2813-2819.                             | 9.1  | 163       |
| 132 | Investigation of the Inner Environment of Carbon Nanotubes with a Fullereneâ€Nitroxide Probe. Small, 2008, 4, 350-356.                                                            | 10.0 | 25        |
| 133 | Crystallographic Order in Multi-Walled Carbon Nanotubes Synthesized in the Presence of Nitrogen.<br>Small, 2008, 4, 306-306.                                                      | 10.0 | 0         |
| 134 | A simple low temperature synthesis route for ZnO–MgO core–shell nanowires. Nanotechnology, 2008, 19, 465603.                                                                      | 2.6  | 111       |
| 135 | Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Materials, 2008, 7, 372-375.                                                                  | 27.5 | 248       |
| 136 | Growth of aligned millimeter-long carbon nanotube by chemical vapor deposition. Diamond and Related Materials, 2008, 17, 1447-1451.                                               | 3.9  | 44        |
| 137 | In-situ X-ray Photoelectron Spectroscopy Study of Catalystâ^'Support Interactions and Growth of Carbon Nanotube Forests. Journal of Physical Chemistry C, 2008, 112, 12207-12213. | 3.1  | 240       |
| 138 | Enhanced Subthreshold Slopes in Large Diameter Single Wall Carbon Nanotube Field Effect Transistors. IEEE Nanotechnology Magazine, 2008, 7, 458-462.                              | 2.0  | 16        |
| 139 | Template Nanowires for Spintronics Applications: Nanomagnet Microwave Resonators Functioning in Zero Applied Magnetic Field. Nano Letters, 2008, 8, 3683-3687.                    | 9.1  | 67        |
| 140 | Manipulation and tracking of superparamagnetic nanoparticles using MRI. Nanotechnology, 2008, 19, 395102.                                                                         | 2.6  | 19        |
| 141 | Nanostructured Ag <sub>4</sub> O <sub>4</sub> films with enhanced antibacterial activity. Nanotechnology, 2008, 19, 475602.                                                       | 2.6  | 38        |
| 142 | Catalyst Dynamics during Carbon Nanotube and Si Nanowire CVD. Microscopy and Microanalysis, 2008, 14, 206-207.                                                                    | 0.4  | 0         |
| 143 | Controlling the Catalyst During Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 2008, 8, 6105-6111.                                                            | 0.9  | 12        |
| 144 | Flying and Crawling Modes during Surface-Bound Single Wall Carbon Nanotube Growth. Journal of Physical Chemistry C, 2007, 111, 17249-17253.                                       | 3.1  | 9         |

| #   | Article                                                                                                                                                                                           | IF   | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Nanoscale Tunable Proton/Hydrogen Sensing:Â Evidence for Surface-Adsorbed Hydrogen Atom on Architectured Palladium Nanoparticles. Journal of the American Chemical Society, 2007, 129, 6068-6069. | 13.7 | 49        |
| 146 | In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation. Nano Letters, 2007, 7, 602-608.                                                                        | 9.1  | 662       |
| 147 | Surface Structure, Hydration, and Cationic Sites of Nanohydroxyapatite:  UHR-TEM, IR, and Microgravimetric Studies. Journal of Physical Chemistry C, 2007, 111, 4027-4035.                        | 3.1  | 108       |
| 148 | Catalytic and seeded shape-selective synthesis of II–VI semiconductor nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 138-141.                                        | 2.7  | 7         |
| 149 | Photoemission investigations on nanostructured TiO2 grown by cluster assembling. Surface Science, 2007, 601, 2688-2691.                                                                           | 1.9  | 7         |
| 150 | INORGANIC NANOWIRES. Series on Iraq War and Its Consequences, 2007, , 33-53.                                                                                                                      | 0.1  | 1         |
| 151 | Effects of pre-treatment and plasma enhancement on chemical vapor deposition of carbon nanotubes from ultra-thin catalyst films. Diamond and Related Materials, 2006, 15, 1029-1035.              | 3.9  | 40        |
| 152 | Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures. Nano Letters, 2006, 6, 1107-1112.                                                                        | 9.1  | 297       |
| 153 | Crystallographic Order in Multi-Walled Carbon Nanotubes Synthesized in the Presence of Nitrogen. Small, 2006, 2, 774-784.                                                                         | 10.0 | 44        |
| 154 | Shape-selective synthesis of Il–VI semiconductor nanowires. Physica Status Solidi (B): Basic Research, 2006, 243, 3301-3305.                                                                      | 1.5  | 9         |
| 155 | Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains?. Journal of Materials Science: Materials in Medicine, 2006, 17, 1079-1087.     | 3.6  | 49        |
| 156 | Electronic properties and applications of cluster-assembled carbon films. Journal of Materials Science: Materials in Electronics, 2006, 17, 427-441.                                              | 2.2  | 29        |
| 157 | Synthesis and optical properties of silicon nanowires grown by different methods. Applied Physics A: Materials Science and Processing, 2006, 85, 247-253.                                         | 2.3  | 45        |
| 158 | Deterministic shape-selective synthesis of nanowires, nanoribbons and nanosaws by steady-state vapour-transport. Nanotechnology, 2006, 17, 1046-1051.                                             | 2.6  | 22        |
| 159 | Nanocrystalline Metal/Carbon Composites Produced by Supersonic Cluster Beam Deposition. Journal of Nanoscience and Nanotechnology, 2005, 5, 1072-1080.                                            | 0.9  | 10        |
| 160 | Nanostructured CNx (0 <x<0.2) 1460-1469.<="" 2005,="" 43,="" beam="" by="" carbon,="" cluster="" deposition.="" films="" grown="" supersonic="" td=""><td>10.3</td><td>21</td></x<0.2)>           | 10.3 | 21        |
| 161 | Low temperature synthesis of carbon nanofibres on carbon fibre matrices. Carbon, 2005, 43, 2643-2648.                                                                                             | 10.3 | 60        |
| 162 | Nickel Formate Route to the Growth of Carbon Nanotubes ChemInform, 2005, 36, no.                                                                                                                  | 0.0  | 0         |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Titanium fullerenoid oxides. Applied Physics Letters, 2005, 87, 201906.                                                                                                   | 3.3 | 14        |
| 164 | Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 153103.                          | 3.3 | 87        |
| 165 | Selective growth of ZnSe and ZnCdSe nanowires by molecular beam epitaxy. Nanotechnology, 2005, 16, \$139-\$142.                                                           | 2.6 | 32        |
| 166 | Wet catalyst assisted growth of carbon nanofibers on complex three-dimensional substrates. Diamond and Related Materials, 2005, 14, 733-738.                              | 3.9 | 22        |
| 167 | Libraries of cluster-assembled titania films for chemical sensing. Applied Physics Letters, 2005, 87, 103108.                                                             | 3.3 | 52        |
| 168 | Ruthenium-coated ruthenium oxide nanorods. Applied Physics Letters, 2004, 85, 5385-5387.                                                                                  | 3.3 | 14        |
| 169 | Self-assembly of novel nanowires by thermolysis of fullerene and transition metal thin films. Nanotechnology, 2004, 15, 601-608.                                          | 2.6 | 7         |
| 170 | The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2004, 95, 6387-6391.       | 2.5 | 105       |
| 171 | Nickel Formate Route to the Growth of Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 18446-18450.                                                          | 2.6 | 32        |
| 172 | Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diamond and Related Materials, 2004, 13, 1171-1176.                                       | 3.9 | 81        |
| 173 | Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2003, 94, 6005-6012.                                 | 2.5 | 247       |
| 174 | Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2003, 83, 135-137.                                      | 3.3 | 364       |
| 175 | The influence of the precursor clusters on the structural and morphological evolution of nanostructured TiO2under thermal annealing. Nanotechnology, 2003, 14, 1168-1173. | 2.6 | 83        |
| 176 | Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Applied Physics Letters, 2003, 83, 4661-4663.                                      | 3.3 | 164       |
| 177 | The structure of negatively curved spongy carbon. Diamond and Related Materials, 2003, 12, 768-773.                                                                       | 3.9 | 49        |
| 178 | Engineering the nanocrystalline structure of TiO2 films by aerodynamically filtered cluster deposition. Applied Physics Letters, 2002, 81, 3052-3054.                     | 3.3 | 78        |
| 179 | Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films. Journal of Applied Physics, 2002, 92, 5482-5489.                | 2.5 | 32        |
| 180 | Temperature selective growth of carbon nanotubes by chemical vapor deposition. Journal of Applied Physics, 2002, 92, 3299-3303.                                           | 2.5 | 178       |

| #   | Article                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Negatively curved spongy carbon. Applied Physics Letters, 2002, 81, 3359-3361.                                                                                     | 3.3  | 76        |
| 182 | Low-Temperature Self-Assembly of Novel Encapsulated Compound Nanowires. Advanced Materials, 2002, 14, 1821-1824.                                                   | 21.0 | 15        |
| 183 | A Simple Method for the Synthesis of Silicon Carbide Nanorods. Journal of Nanoscience and Nanotechnology, 2002, 2, 453-456.                                        | 0.9  | 3         |
| 184 | Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2001, 90, 5308-5317. | 2.5  | 1,034     |
| 185 | Field emission from short and stubby vertically aligned carbon nanotubes. Applied Physics Letters, 2001, 79, 2079-2081.                                            | 3.3  | 150       |
| 186 | Sodium Diffusion from P1 Lines Passivates Perovskite Solar Modules. , 0, , .                                                                                       |      | 1         |
| 187 | Scaling Up of Perovskite Solar Modules: from materials to design optimization. , 0, , .                                                                            |      | 0         |
| 188 | Nanoscale Heterogeneities Limit Optoelectronic Performance in Halide Perovskites. , 0, , .                                                                         |      | 0         |
| 189 | Manipulating Two-Dimensional Hybrid Perovskites Optoelectronic Properties and Phase Segregation by Halides Compositional Engineering. , 0, , .                     |      | 0         |