Michael Rosbash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8792135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted RNA editing: novel tools to study post-transcriptional regulation. Molecular Cell, 2022, 82, 389-403.	4.5	18
2	Transposable element landscapes in aging Drosophila. PLoS Genetics, 2022, 18, e1010024.	1.5	19
3	Recurrent circadian circuitry regulates central brain activity to maintain sleep. Neuron, 2022, 110, 2139-2154.e5.	3.8	13
4	A transcriptomic taxonomy of Drosophila circadian neurons around the clock. ELife, 2021, 10, .	2.8	72
5	Internal state configures olfactory behavior and early sensory processing in <i>Drosophila</i> larvae. Science Advances, 2021, 7, .	4.7	51
6	Phosphatase of Regenerating Liver-1 Selectively Times Circadian Behavior in Darkness via Function in PDF Neurons and Dephosphorylation of TIMELESS. Current Biology, 2021, 31, 138-149.e5.	1.8	17
7	Circadian Rhythms and the Transcriptional Feedback Loop (Nobel Lecture)**. Angewandte Chemie - International Edition, 2021, 60, 8650-8666.	7.2	31
8	Circadian Rhythms and the Transcriptional Feedback Loop (Nobel Lecture)**. Angewandte Chemie, 2021, 133, 8732-8748.	1.6	0
9	Comment on "Circadian rhythms in the absence of the clock gene <i>Bmal1</i> ― Science, 2021, 372, .	6.0	8
10	Protocol for using TRIBE to study RNA-protein interactions and nuclear organization in mammalian cells. STAR Protocols, 2021, 2, 100634.	0.5	1
11	Development of a Saliva-Optimized RT-LAMP Assay for SARS-CoV-2. Journal of Biomolecular Techniques, 2021, 32, 102-113.	0.8	5
12	Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. Journal of Biomolecular Techniques, 2021, 32, 228-275.	0.8	28
13	MS2-TRIBE Evaluates Both Protein-RNA Interactions and Nuclear Organization of Transcription by RNA Editing. IScience, 2020, 23, 101318.	1.9	18
14	Metformin treatment of the C9orf72 ALS/FTD mouse: Almost too good for words. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19627-19628.	3.3	2
15	TRIBE editing reveals specific mRNA targets of elF4E-BP in <i>Drosophila</i> and in mammals. Science Advances, 2020, 6, eabb8771.	4.7	27
16	TDP-43 dysfunction restricts dendritic complexity by inhibiting CREB activation and altering gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11760-11769.	3.3	34
17	Video Recording Can Conveniently Assay Mosquito Locomotor Activity. Scientific Reports, 2020, 10, 4994.	1.6	10
18	Medicine in the Fourth Dimension. Cell Metabolism, 2019, 30, 238-250.	7.2	245

#	Article	IF	CITATIONS
19	A Serotonin-Modulated Circuit Controls Sleep Architecture to Regulate Cognitive Function Independent of Total Sleep in Drosophila. Current Biology, 2019, 29, 3635-3646.e5.	1.8	66
20	Light-Mediated Circuit Switching in the Drosophila Neuronal Clock Network. Current Biology, 2019, 29, 3266-3276.e3.	1.8	36
21	A distinct visual pathway mediates high light intensity adaptation of the circadian clock in <i>Drosophila</i> . Journal of Neuroscience, 2019, 39, 1497-18.	1.7	31
22	Allatostatin-C/AstC-R2 Is a Novel Pathway to Modulate the Circadian Activity Pattern in Drosophila. Current Biology, 2019, 29, 13-22.e3.	1.8	55
23	Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. ELife, 2019, 8, .	2.8	48
24	Mechanistic implications of enhanced editing by a HyperTRIBE RNA-binding protein. Rna, 2018, 24, 173-182.	1.6	65
25	A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila. Neuron, 2018, 100, 624-635.e4.	3.8	152
26	NonA and CPX Link the Circadian Clockwork to Locomotor Activity in Drosophila. Neuron, 2018, 99, 768-780.e3.	3.8	11
27	Identification of RNA-binding protein targets with HyperTRIBE. Nature Protocols, 2018, 13, 1829-1849.	5.5	66
28	Striking circadian neuron diversity and cycling of Drosophila alternative splicing. ELife, 2018, 7, .	2.8	24
29	Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock. Scientific Reports, 2017, 7, 41560.	1.6	18
30	A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons. Scientific Reports, 2017, 7, 42586.	1.6	29
31	A 50-Year Personal Journey: Location, Gene Expression, and Circadian Rhythms. Cold Spring Harbor Perspectives in Biology, 2017, 9, a032516.	2.3	15
32	Nonreciprocal homeostatic compensation in <i>Drosophila</i> potassium channel mutants. Journal of Neurophysiology, 2017, 117, 2125-2136.	0.9	16
33	MicroRNA-92a is a circadian modulator of neuronal excitability in Drosophila. Nature Communications, 2017, 8, 14707.	5.8	67
34	Temporal calcium profiling of specific circadian neurons in freely moving flies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8780-E8787.	3.3	70
35	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	1.4	237
36	RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides. PLoS Genetics, 2017, 13, e1006613.	1.5	111

#	Article	IF	CITATIONS
37	Genome-wide identification of neuronal activity-regulated genes in Drosophila. ELife, 2016, 5, .	2.8	68
38	TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins. Cell, 2016, 165, 742-753.	13.5	182
39	mir-276a strengthens <i>Drosophila</i> circadian rhythms by regulating <i>timeless</i> expression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2965-72.	3.3	47
40	Circadian neuron feedback controls the Drosophila sleep–activity profile. Nature, 2016, 536, 292-297.	13.7	249
41	Age-Related Reduction of Recovery Sleep and Arousal Threshold in <i>Drosophila</i> . Sleep, 2016, 39, 1613-1624.	0.6	67
42	Promiscuous or discriminating: Has the favored mRNA target of Fragile X Mental Retardation Protein been overlooked?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7009-7011.	3.3	5
43	Five suggestions for substantial NIH reforms. ELife, 2016, 5, .	2.8	3
44	Ronald J. Konopka (1947–2015). Cell, 2015, 161, 187-188.	13.5	7
45	Genome-wide features of neuroendocrine regulation in Drosophila by the basic helix-loop-helix transcription factor DIMMED. Nucleic Acids Research, 2015, 43, 2199-2215.	6.5	23
46	RNA-seq Profiling of Small Numbers of Drosophila Neurons. Methods in Enzymology, 2015, 551, 369-386.	0.4	32
47	Clk post-transcriptional control denoises circadian transcription both temporally and spatially. Nature Communications, 2015, 6, 7056.	5.8	41
48	We'll always have RNA. Rna, 2015, 21, 546-547.	1.6	0
49	CLOCK:BMAL1 is a pioneer-like transcription factor. Genes and Development, 2014, 28, 8-13.	2.7	184
50	PDF and cAMP enhance PER stability in <i>Drosophila</i> clock neurons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1284-90.	3.3	67
51	PDF neuron firing phase-shifts key circadian activity neurons in Drosophila. ELife, 2014, 3, .	2.8	96
52	Short Neuropeptide F Is a Sleep-Promoting Inhibitory Modulator. Neuron, 2013, 80, 171-183.	3.8	108
53	Accelerated Degradation of <i>per^S</i> Protein Provides Insight into Light-Mediated Phase Shifting. Journal of Biological Rhythms, 2013, 28, 171-182.	1.4	15
54	Nascent-Seq analysis of <i>Drosophila</i> cycling gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E275-84.	3.3	81

#	Article	IF	CITATIONS
55	CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in <i>Drosophila</i> . Genes and Development, 2012, 26, 2536-2549.	2.7	33
56	NAT1/DAP5/p97 and Atypical Translational Control in the <i>Drosophila</i> Circadian Oscillator. Genetics, 2012, 192, 943-957.	1.2	35
57	Autoreceptor Control of Peptide/Neurotransmitter Corelease from PDF Neurons Determines Allocation of Circadian Activity in Drosophila. Cell Reports, 2012, 2, 332-344.	2.9	76
58	The Oscillating miRNA 959-964 Cluster Impacts Drosophila Feeding Time and Other Circadian Outputs. Cell Metabolism, 2012, 16, 601-612.	7.2	57
59	Nascent-Seq Indicates Widespread Cotranscriptional RNA Editing in Drosophila. Molecular Cell, 2012, 47, 27-37.	4.5	113
60	Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. ELife, 2012, 1, e00011.	2.8	270
61	When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Current Opinion in Neurobiology, 2011, 21, 849-857.	2.0	79
62	Molecular Organization of Drosophila Neuroendocrine Cells by Dimmed. Current Biology, 2011, 21, 1515-1524.	1.8	33
63	Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nature Neuroscience, 2011, 14, 889-895.	7.1	106
64	Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in <i>Drosophila</i> . Genes and Development, 2011, 25, 2502-2512.	2.7	218
65	<i>Drosophila</i> CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes and Development, 2011, 25, 2374-2386.	2.7	154
66	A Threat to Medical Innovation. Science, 2011, 333, 136-136.	6.0	22
67	Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nature Neuroscience, 2010, 13, 60-68.	7.1	135
68	Dynamic PER repression mechanisms in the <i>Drosophila</i> circadian clock: from on-DNA to off-DNA. Genes and Development, 2010, 24, 358-367.	2.7	126
69	Surprising gene expression patterns within and between PDF-containing circadian neurons in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13497-13502.	3.3	154
70	Genome-Wide Analysis of Light- and Temperature-Entrained Circadian Transcripts in Caenorhabditis elegans. PLoS Biology, 2010, 8, e1000503.	2.6	60
71	Light-Mediated TIM Degradation within Drosophila Pacemaker Neurons (s-LNvs) Is Neither Necessary nor Sufficient for Delay Zone Phase Shifts. Neuron, 2010, 66, 378-385.	3.8	53
72	A role for microRNAs in the <i>Drosophila</i> circadian clock. Genes and Development, 2009, 23, 2179-2191.	2.7	178

#	Article	IF	CITATIONS
73	The Implications of Multiple Circadian Clock Origins. PLoS Biology, 2009, 7, e1000062.	2.6	195
74	PDF Cells Are a GABA-Responsive Wake-Promoting Component of the Drosophila Sleep Circuit. Neuron, 2008, 60, 672-682.	3.8	366
75	Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the <i>Drosophila</i> brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19587-19594.	3.3	275
76	Circadian Transcription Contributes to Core Period Determination in Drosophila. PLoS Biology, 2008, 6, e119.	2.6	68
77	Circadian Rhythms in Drosophila. Novartis Foundation Symposium, 2008, , 223-237.	1.2	7
78	PER-TIM Interactions with the Photoreceptor Cryptochrome Mediate Circadian Temperature Responses in Drosophila. PLoS Biology, 2007, 5, e146.	2.6	64
79	Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component. Genes and Development, 2007, 21, 1675-1686.	2.7	166
80	The Drosophila Circadian Network Is a Seasonal Timer. Cell, 2007, 129, 207-219.	13.5	221
81	A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature, 2005, 438, 238-242.	13.7	264
82	PERIOD1-Associated Proteins Modulate the Negative Limb of the Mammalian Circadian Oscillator. Science, 2005, 308, 693-696.	6.0	248
83	Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature, 2004, 431, 862-868.	13.7	626
84	The Coevolution of Blue-Light Photoreception and Circadian Rhythms. Journal of Molecular Evolution, 2003, 57, S286-S289.	0.8	100
85	Drosophila Free-Running Rhythms Require Intercellular Communication. PLoS Biology, 2003, 1, e13.	2.6	234
86	Circadian rhythms in Drosophila. Novartis Foundation Symposium, 2003, 253, 223-32; discussion 52-5, 102-9, 232-7 passim.	1.2	4
87	Sequential Nuclear Accumulation of the Clock Proteins Period and Timeless in the Pacemaker Neurons of <i>Drosophila melanogaster</i> . Journal of Neuroscience, 2002, 22, 5946-5954.	1.7	224
88	A role for casein kinase $2\hat{l}\pm$ in the Drosophila circadian clock. Nature, 2002, 420, 816-820.	13.7	323
89	A Block to mRNA Nuclear Export in S. cerevisiae Leads to Hyperadenylation of Transcripts that Accumulate at the Site of Transcription. Molecular Cell, 2001, 7, 887-898.	4.5	172
90	Microarray Analysis and Organization of Circadian Gene Expression in Drosophila. Cell, 2001, 107, 567-578.	13.5	560

#	Article	IF	CITATIONS
91	Stopping Time: The Genetics of Fly and Mouse Circadian Clocks. Annual Review of Neuroscience, 2001, 24, 1091-1119.	5.0	287
92	Yeast U1 snRNP–pre-mRNA complex formation without U1snRNA–pre-mRNA base pairing. Rna, 2001, 7, 133-142.	1.6	36
93	Crystal structure of a model branchpoint–U2 snRNA duplex containing bulged adenosines. Rna, 2001, 7, 682-691.	1.6	43
94	Quality control of mRNA 3â€2-end processing is linked to the nuclear exosome. Nature, 2001, 413, 538-542.	13.7	312
95	A unique circadian-rhythm photoreceptor. Nature, 2000, 404, 456-457.	13.7	227
96	Two NoveldoubletimeMutants Alter Circadian Properties and Eliminate the Delay between RNA and Protein inDrosophila. Journal of Neuroscience, 2000, 20, 7547-7555.	1.7	88
97	Identification of Novel Saccharomyces cerevisiae Proteins with Nuclear Export Activity: Cell Cycle-Regulated Transcription Factor Ace2p Shows Cell Cycle-Independent Nucleocytoplasmic Shuttling. Molecular and Cellular Biology, 2000, 20, 8047-8058.	1.1	36
98	Drosophila CRY Is a Deep Brain Circadian Photoreceptor. Neuron, 2000, 26, 493-504.	3.8	390
99	Identification of Novel Saccharomyces cerevisiaeProteins with Nuclear Export Activity: Cell Cycle-Regulated Transcription Factor Ace2p Shows Cell Cycle-Independent Nucleocytoplasmic Shuttling. Molecular and Cellular Biology, 2000, 20, 8047-8058.	1.1	3
100	A pdf Neuropeptide Gene Mutation and Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in Drosophila. Cell, 1999, 99, 791-802.	13.5	1,069
101	Evidence that the TIM Light Response Is Relevant to Light-Induced Phase Shifts in Drosophila melanogaster. Neuron, 1998, 21, 225-234.	3.8	136
102	A Mutant Drosophila Homolog of Mammalian Clock Disrupts Circadian Rhythms and Transcription of period and timeless. Cell, 1998, 93, 791-804.	13.5	673
103	CYCLE Is a Second bHLH-PAS Clock Protein Essential for Circadian Rhythmicity and Transcription of Drosophila period and timeless. Cell, 1998, 93, 805-814.	13.5	598
104	CRY, a Drosophila Clock and Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and Photosensitivity. Cell, 1998, 95, 669-679.	13.5	846
105	The cryb Mutation Identifies Cryptochrome as a Circadian Photoreceptor in Drosophila. Cell, 1998, 95, 681-692.	13.5	927
106	The KH domain of the branchpoint sequence binding protein determines specificity for the pre-mRNA branchpoint sequence. Rna, 1998, 4, 998-1006.	1.6	42
107	Circadian Cycling of a PERIOD-β-galactosidase Fusion Protein in Drosophila: Evidence for Cyclical Degradation. Journal of Biological Rhythms, 1997, 12, 157-172.	1.4	67
108	The timSL Mutant of the Drosophila Rhythm Gene timeless Manifests Allele-Specific Interactions with period Gene Mutants. Neuron, 1996, 17, 921-929.	3.8	108

148

#	Article	IF	CITATIONS
109	A light-entrainment mechanism for the Drosophila circadian clock. Nature, 1996, 380, 129-135.	13.7	432
110	Transfer of dye among salivary gland cells is not affected by genetic variations of the period clock gene in Drosophila melanogaster. Journal of Membrane Biology, 1993, 136, 333-42.	1.0	8
111	PAS is a dimerization domain common to Drosophila Period and several transcription factors. Nature, 1993, 364, 259-262.	13.7	498
112	Mapping the <i>Clock</i> Rhythm Mutation to the <i>Period</i> Locus of <i>Drosophila Melanogaster</i> by Germline Transformation. Journal of Neurogenetics, 1992, 8, 173-179.	0.6	20
113	The Analysis of New Short-Period Circadian Rhythm Mutants Suggests Features of <i>D. Melanogaster Period</i> Gene Function. Journal of Neurogenetics, 1992, 8, 101-113.	0.6	66
114	Behavior of period-altered circadian rhythm mutants ofDrosophila in light: Dark cycles (Diptera:) Tj ETQq0 0 0 rgE	3T /Overloc	ck 10 Tf 50 5
115	Circadian oscillations in protein and mRNA levels of the <i>period</i> gene of <i>Drosophila melanogaster</i> . Biochemical Society Transactions, 1991, 19, 533-537.	1.6	8
116	Cloning of the two essential yeast genes, PRP6 and PRP9,and their rapid mapping, disruption and partial sequencing using a linker insertion strategy. Molecular Genetics and Genomics, 1991, 225, 199-202.	2.4	16
117	Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature, 1990, 343, 536-540.	13.7	1,031
118	Requirement for <i>Period</i> Gene Expression in the Adult and Not During Development for Locomotor Activity Rhythms of Imaginal <i>Drosophila Melanogaster</i> . Journal of Neurogenetics, 1990, 7, 31-73.	0.6	95
119	Sequence requirements for branch formation in a group II self-splicing Intron. Nucleic Acids Research, 1989, 17, 335-354.	6.5	19
120	A New Mutation at the <i>Period</i> Locus of <i>Drosophila Melanogaster</i> With Some Novel Effects on Circadian Rhythms. Journal of Neurogenetics, 1989, 5, 229-256.	0.6	83
121	An inducible promoter fused to the period gene in Drosophila conditionally rescues adult per-mutant arrhythmicity. Nature, 1988, 333, 82-84.	13.7	58
122	Genetics and molecular biology of rhythms. BioEssays, 1987, 7, 108-112.	1.2	23
123	A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature, 1987, 326, 42-47.	13.7	242
124	Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature, 1987, 326, 765-769.	13.7	143
125	Germ-Line Transformation Involving DNA from the <i>period</i> Locus in <i>Drosophila melanogaster</i> : Overlapping Genomic Fragments that Restore Circadian and Ultradian Rhythmicity to <i>per⁰</i> and <i>per^{â^'}</i> Mutants. Journal of Neurogenetics, 1986, 3, 249-291.	0.6	176

126The period clock locus of D. melanogaster codes for a proteoglycan. Cell, 1986, 46, 53-61.13.5

#	Article	IF	CITATIONS
127	Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature, 1986, 324, 341-345.	13.7	307
128	A Drosophila Minute gene encodes a ribosomal protein. Nature, 1985, 317, 555-558.	13.7	231
129	Cleavage of 5′ splice site and lariat formation are independent of 3′ splice site in yeast mRNA splicing. Nature, 1985, 317, 735-737.	13.7	120
130	Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell, 1984, 38, 701-710.	13.5	382
131	P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic drosophila melanogaster. Cell, 1984, 39, 369-376.	13.5	347
132	DNase I hypersensitive sites of the chromatin for Drosophila melanogaster ribosomal protein 49 gene. Nucleic Acids Research, 1981, 9, 6749-6762.	6.5	38
133	Isolation and mapping of a cloned ribosomal protein gene of Drosophila melanogaster. Nature, 1980, 285, 674-676.	13.7	110