Yunbing Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8791633/publications.pdf

Version: 2024-02-01

31 papers	972 citations	18 h-index	454955 30 g-index
32 all docs	32 docs citations	32 times ranked	723 citing authors

#	Article	IF	Citations
1	Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions. Food Chemistry, 2020, 310, 125828.	8.2	89
2	Digestibility and gastrointestinal fate of meat versus plant-based meat analogs: An in vitro comparison. Food Chemistry, 2021, 364, 130439.	8.2	74
3	Nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocolloids, 2020, 106, 105878.	10.7	70
4	Formation, characterization, and application of chitosan/pectin-stabilized multilayer emulsions as astaxanthin delivery systems. International Journal of Biological Macromolecules, 2019, 140, 985-997.	7.5	54
5	Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions. Food Research International, 2019, 120, 264-274.	6.2	54
6	Modulation of Physicochemical Characteristics of Pickering Emulsions: Utilization of Nanocellulose- and Nanochitin-Coated Lipid Droplet Blends. Journal of Agricultural and Food Chemistry, 2020, 68, 603-611.	5.2	52
7	Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food and Function, 2020, 11, 187-199.	4.6	50
8	Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type. Food Research International, 2020, 137, 109739.	6.2	48
9	Factors impacting lipid digestion and \hat{l}^2 -carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): oil droplet concentration. Food and Function, 2020, 11, 7126-7137.	4.6	41
10	Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chemistry, 2021, 348, 129148.	8.2	41
11	Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food and Function, 2020, 11, 174-186.	4.6	38
12	Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends in Food Science and Technology, 2022, 122, 314-327.	15.1	38
13	Role of Mucin in Behavior of Food-Grade TiO ₂ Nanoparticles under Simulated Oral Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 5882-5890.	5.2	32
14	Bioaccessibility and stability of \hat{l}^2 -carotene encapsulated in plant-based emulsions: impact of emulsifier type and tannic acid. Food and Function, 2019, 10, 7239-7252.	4.6	27
15	Fabrication and characterization of W/O/W emulsions with crystalline lipid phase. Journal of Food Engineering, 2020, 273, 109826.	5.2	27
16	Comparison of plant-based emulsifier performance in water-in-oil-in-water emulsions: Soy protein isolate, pectin and gum Arabic. Journal of Food Engineering, 2021, 307, 110625.	5.2	26
17	Insight of rheology, water distribution and in vitro digestive behavior of starch based-emulsion gel: Impact of potato starch concentration. Food Hydrocolloids, 2022, 132, 107859.	10.7	25
18	Bioaccessibility of oil-soluble vitamins (A, D, E) in plant-based emulsions: impact of oil droplet size. Food and Function, 2021, 12, 3883-3897.	4.6	20

#	Article	IF	Citations
19	Plant-Based Colloidal Delivery Systems for Bioactives. Molecules, 2021, 26, 6895.	3.8	19
20	Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): oil. Food and Function, 2020, 11, 9936-9946.	4.6	18
21	Comparison of Emulsifying Properties of Plant and Animal Proteins in Oil-in-Water Emulsions: Whey, Soy, and RuBisCo Proteins. Food Biophysics, 2022, 17, 409-421.	3.0	17
22	Production of Plant-Based Seafood: Scallop Analogs Formed by Enzymatic Gelation of Pea Protein-Pectin Mixtures. Foods, 2022, 11, 851.	4.3	16
23	Impact of fat crystallization on the resistance of W/O/W emulsions to osmotic stress: Potential for temperature-triggered release. Food Research International, 2020, 134, 109273.	6.2	15
24	Enhancing emulsion functionality using multilayer technology: Coating lipid droplets with saponin-polypeptide-polysaccharide layers by electrostatic deposition. Food Research International, 2021, 140, 109864.	6.2	15
25	Investigate the adverse effects of foliarly applied antimicrobial nanoemulsion (carvacrol) on spinach. LWT - Food Science and Technology, 2021, 141, 110936.	5.2	12
26	Fabrication, characterization and in vitro digestive behavior of Pickering emulsion incorporated with dextrin. Food Chemistry, 2022, 384, 132528.	8.2	12
27	Characterization of electrostatic interactions and complex formation of $\pm \pounds$ -poly-glutamic acid (PGA) and $\pm \pounds$ -poly-l-lysine (PLL) in aqueous solutions. Food Research International, 2020, 128, 108781.	6.2	11
28	Stabilization of soybean oil-in-water emulsions using polypeptide multilayers: Cationic polylysine and anionic polyglutamic acid. Food Research International, 2020, 137, 109304.	6.2	11
29	Impact of Pesticide Type and Emulsion Fat Content on the Bioaccessibility of Pesticides in Natural Products. Molecules, 2020, 25, 1466.	3.8	7
30	Investigation of Protein Denaturation and Textural Changes of Atlantic Salmon (Salmo salar) During Simulated Cooking. Food Biophysics, 2021, 16, 512-519.	3.0	7
31	Impact of pesticide polarity and lipid phase dimensions on the bioaccessibility of pesticides in agricultural produce consumed with model fatty foods. Food and Function, 2020, 11, 6028-6037.	4.6	5