Ryan C Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8791511/publications.pdf

Version: 2024-02-01

28 papers 6,101 citations

218381 26 h-index 27 g-index

29 all docs

29 docs citations

times ranked

29

12310 citing authors

#	Article	IF	CITATIONS
1	ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biology, 2013, 15, 741-750.	4.6	1,255
2	Amino acid signalling upstream of mTOR. Nature Reviews Molecular Cell Biology, 2013, 14, 133-139.	16.1	716
3	Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy. Cell, 2013, 152, 290-303.	13.5	646
4	Autophagy regulation by nutrient signaling. Cell Research, 2014, 24, 42-57.	5.7	601
5	Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347, 194-198.	6.0	585
6	YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN viaÂmiR-29. Nature Cell Biology, 2012, 14, 1322-1329.	4.6	392
7	Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nature Genetics, 2010, 42, 794-800.	9.4	308
8	Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 2013, 9, 1983-1995.	4.3	249
9	VHL Promotes E2 Box-Dependent E-Cadherin Transcription by HIF-Mediated Regulation of SIP1 and Snail. Molecular and Cellular Biology, 2007, 27, 157-169.	1.1	230
10	Organ Size Control by Hippo and TOR Pathways. Current Biology, 2012, 22, R368-R379.	1.8	167
11	An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development (Cambridge), 2011, 138, 3343-3356.	1.2	123
12	Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Molecular Medicine, 2013, 5, 870-890.	3.3	96
13	Rag GTPases are cardioprotective by regulating lysosomal function. Nature Communications, 2014, 5, 4241.	5 . 8	73
14	mGluR5 antagonism increases autophagy and prevents disease progression in the <i>zQ175</i> mouse model of Huntington's disease. Science Signaling, 2017, 10, .	1.6	70
15	Loss of JAK2 regulation via a heterodimeric VHL-SOCS1 E3 ubiquitin ligase underlies Chuvash polycythemia. Nature Medicine, 2011, 17, 845-853.	15.2	68
16	The multifaceted role of autophagy in cancer. EMBO Journal, 2022, 41, e110031.	3.5	63
17	Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Reports, 2019, 20, e47911.	2.0	61
18	Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response. PLoS Genetics, 2008, 4, e1000176.	1.5	58

#	Article	IF	CITATIONS
19	Regulation of Autophagy Enzymes by Nutrient Signaling. Trends in Biochemical Sciences, 2021, 46, 687-700.	3.7	48
20	Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nature Communications, 2015, 6, 8283.	5.8	47
21	NEDD8 acts as a †molecular switch†defining the functional selectivity of VHL. EMBO Reports, 2008, 9, 486-491.	2.0	44
22	An antibody for analysis of autophagy induction. Nature Methods, 2020, 17, 232-239.	9.0	44
23	AMPK Promotes Xenophagy through Priming of Autophagic Kinases upon Detection of Bacterial Outer Membrane Vesicles. Cell Reports, 2019, 26, 2150-2165.e5.	2.9	43
24	NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015, 29, 2362-2376.	2.7	37
25	ULK1â€mediated phosphorylation of ATG16L1 promotes xenophagy, but destabilizes the ATG16L1 Crohn's mutant. EMBO Reports, 2019, 20, e46885.	2.0	37
26	The Role of VHL in the Regulation of E-Cadherin: A New Connection in an Old Pathway. Cell Cycle, 2007, 6, 56-59.	1.3	28
27	Bacterial outer membrane vesicles trigger pre-activation of a xenophagic response via AMPK. Autophagy, 2019, 15, 1489-1491.	4.3	12
28	Mechanistic Target of Rapamycin. , 2017, , 231-250.		0