Corinne J Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8791466/publications.pdf

Version: 2024-02-01

43 papers

3,038 citations

218381 26 h-index 288905 40 g-index

48 all docs 48 docs citations

times ranked

48

3606 citing authors

#	Article	IF	CITATIONS
1	Clathrin: the molecular shape shifter. Biochemical Journal, 2021, 478, 3099-3123.	1.7	16
2	Multiâ€modal adaptorâ€clathrin contacts drive coated vesicle assembly. EMBO Journal, 2021, 40, e108795.	3.5	8
3	Bacteriophage K1F targets Escherichia coli K1 in cerebral endothelial cells and influences the barrier function. Scientific Reports, 2020, 10, 8903.	1.6	23
4	The MiDAC histone deacetylase complex is essential for embryonic development and has a unique multivalent structure. Nature Communications, 2020, 11, 3252.	5.8	51
5	Characterization of a novel method for the production of singleâ€span membrane proteins in <i>Escherichia coli ⟨i⟩. Biotechnology and Bioengineering, 2019, 116, 722-733.</i>	1.7	1
6	Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self-assembly. Nature Structural and Molecular Biology, 2019, 26, 890-898.	3.6	56
7	Nano-encapsulated Escherichia coli Divisome Anchor ZipA, and in Complex with FtsZ. Scientific Reports, 2019, 9, 18712.	1.6	16
8	Structure and Assembly of Clathrin Cages. Sub-Cellular Biochemistry, 2017, 83, 551-567.	1.0	12
9	TatA complexes exhibit a marked change in organisation in response to expression of the TatBC complex. Biochemical Journal, 2017, 474, 1495-1508.	1.7	3
10	CHC22 and CHC17 clathrins have distinct biochemical properties and display differential regulation and function. Journal of Biological Chemistry, 2017, 292, 20834-20844.	1.6	24
11	Weak Molecular Interactions in Clathrin-Mediated Endocytosis. Frontiers in Molecular Biosciences, 2017, 4, 72.	1.6	43
12	The structure of the core NuRD repression complex provides insights into its interaction with chromatin. ELife, 2016, 5, e13941.	2.8	108
13	Fabrication of crystals from single metal atoms. Nature Communications, 2014, 5, 3851.	5.8	31
14	Precious metal carborane polymer nanoparticles: characterisation of micellar formulations and anticancer activity. Faraday Discussions, 2014, 175, 229-240.	1.6	33
15	A mutation leading to super-assembly of twin-arginine translocase (Tat) protein complexes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1978-1986.	1.9	11
16	Ultrastructural characterisation of Bacillus subtilis TatA complexes suggests they are too small to form homooligomeric translocation pores. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1811-1819.	1.9	19
17	Tetramerization of ZapA is required for FtsZ bundling. Biochemical Journal, 2013, 449, 795-802.	1.7	37
18	Hsc70â€induced Changes in Clathrinâ€Auxilin Cage Structure Suggest a Role for Clathrin Light Chains in Cage Disassembly. Traffic, 2013, 14, 987-996.	1.3	24

#	Article	IF	Citations
19	Structure of TatA Paralog, TatE, Suggests a Structurally Homogeneous Form of Tat Protein Translocase That Transports Folded Proteins of Differing Diameter. Journal of Biological Chemistry, 2012, 287, 7335-7344.	1.6	34
20	The Mechanics of FtsZ Fibers. Biophysical Journal, 2012, 102, 731-738.	0.2	29
21	Size Doesn't Matter! The Importance of Size Variability in Coated Vesicles. Developmental Cell, 2012, 23, 9-10.	3.1	0
22	A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6927-6932.	3.3	47
23	DNA compaction by the higher-order assembly of PRH/Hex homeodomain protein oligomers. Nucleic Acids Research, 2010, 38, 7513-7525.	6.5	5
24	Membrane Proteins Solubilized Intact in Lipid Containing Nanoparticles Bounded by Styrene Maleic Acid Copolymer. Journal of the American Chemical Society, 2009, 131, 7484-7485.	6.6	446
25	Structural Characterisation of the Insecticidal Toxin XptA1, Reveals a 1.15ÂMDa Tetramer with a Cage-like Structure. Journal of Molecular Biology, 2007, 366, 1558-1568.	2.0	37
26	Understanding Cage Diassembly. Imaging & Microscopy, 2007, 9, 54-54.	0.1	0
27	Oligomerisation of the Developmental Regulator Proline Rich Homeodomain (PRH/Hex) is Mediated by a Novel Proline-rich Dimerisation Domain. Journal of Molecular Biology, 2006, 358, 943-962.	2.0	24
28	Life of a clathrin coat: insights from clathrin and AP structures. Nature Reviews Molecular Cell Biology, 2006, 7, 32-44.	16.1	190
29	STRUCTURAL BIOLOGY: Two Geometric Solutions to a Transporting Problem. Science, 2006, 311, 182-183.	6.0	2
30	Expression, purification and crystallization of the cell-division protein YgfE fromEscherichia coli. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 305-307.	0.7	0
31	Natively unfolded domains in endocytosis: hooks, lines and linkers. EMBO Reports, 2004, 5, 1046-1052.	2.0	77
32	Location of Auxilin Within a Clathrin Cage. Journal of Molecular Biology, 2004, 336, 461-471.	2.0	27
33	Clathrin coat construction in endocytosis. Current Opinion in Structural Biology, 2000, 10, 220-228.	2.6	108
34	Clathrin: anatomy of a coat protein. Trends in Cell Biology, 1999, 9, 335-338.	3.6	41
35	Functional Organization of Clathrin in Coats. Molecular Cell, 1999, 3, 761-770.	4.5	103
36	Clathrin coats at 21Aresolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO Journal, 1998, 17, 4943-4953.	3.5	129

#	ARTICLE	IF	CITATIONS
37	Conformational properties of the prion octa-repeat and hydrophobic sequences. FEBS Letters, 1997, 405, 378-384.	1.3	40
38	Clathrin interacts specifically with amphiphysin and is displaced by dynamin 1. FEBS Letters, 1997, 413, 319-322.	1.3	89
39	Prion protein is necessary for normal synaptic function. Nature, 1994, 370, 295-297.	13.7	748
40	The energetics and cooperativity of protein folding: a simple experimental analysis based upon the solvation of internal residues. Biochemistry, 1993, 32, 3842-3851.	1.2	65
41	Detection and characterization of intermediates in the folding of large proteins by the use of genetically inserted tryptophan probes. Biochemistry, 1991, 30, 1028-1036.	1.2	67
42	Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry, 1991, 30, 9195-9200.	1.2	177
43	Rational construction of a 2-hydroxyacid dehydrogenase with new substrate specificity. Biochemical and Biophysical Research Communications, 1987, 148, 15-23.	1.0	35