Pascal Molle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8791377/publications.pdf

Version: 2024-02-01

236612 253896 1,996 67 25 43 h-index citations g-index papers 68 68 68 1376 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Long-term investigations on ammonium removal with zeolite in compact vertical flow treatment wetlands under field conditions. Water Science and Technology, 2022, 85, 746-755.	1.2	1
2	Phosphorus retention by granulated apatite: assessing maximum retention capacity, kinetics and retention processes. Water Science and Technology, 2021, 83, 792-802.	1.2	1
3	Structural Changes in French VF Treatment Wetland Porous Media during the Rest Period: An Ex Situ Study Using X-ray Tomography. Water (Switzerland), 2021, 13, 389.	1.2	0
4	Granulated apatite filters for phosphorous retention in treatment wetlands: Experience from full-scale applications. Journal of Water Process Engineering, 2021, 40, 101927.	2.6	4
5	Effect of Filter Media and Depth on Hydrodynamics and Treatment Performances of Single-Stage French Vertical Flow Treatment Wetlands Treating Domestic Effluent. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	1
6	Spatialization of saturated hydraulic conductivity using the Bayesian Maximum Entropy method: Application to wastewater infiltration areas. Water Research, 2021, 204, 117607.	5.3	3
7	Performance and reliability comparison of French vertical flow treatment wetlands with other decentralized wastewater treatment technologies in tropical climates. Water Science and Technology, 2020, 82, 1701-1709.	1.2	4
8	French vertical flow treatment wetlands in a subtropical climate: Characterization of the organic deposit layer and comparison with systems in France. Science of the Total Environment, 2020, 742, 140608.	3.9	3
9	Assessment of spatial representativity of X-ray tomography to study Vertical Flow Treatment wetlands. Science of the Total Environment, 2020, 713, 136510.	3.9	7
10	Assessment of X-ray Computed Tomography to characterize filtering media from Vertical Flow Treatment Wetlands at the pore scale. Science of the Total Environment, 2019, 658, 178-188.	3.9	17
11	A single-output model for the dynamic design of constructed wetlands treating combined sewer overflow. Environmental Modelling and Software, 2018, 102, 49-72.	1.9	9
12	The new German standard on constructed wetland systems for treatment of domestic and municipal wastewater. Water Science and Technology, 2018, 78, 2414-2426.	1.2	29
13	On-site single-stage constructed wetland fed by raw wastewater: performances and resilience of the system. Water Science and Technology, 2018, 78, 459-465.	1.2	2
14	Resilience and reliability of compact vertical-flow treatment wetlands designed for tropical climates. Science of the Total Environment, 2018, 642, 208-215.	3.9	17
15	Septage unit treatment by sludge treatment reed beds for easy management and reuse: performance and design considerations. Water Science and Technology, 2018, 77, 279-285.	1.2	17
16	Model-based optimization of constructed wetlands treating combined sewer overflow. Ecological Engineering, 2017, 101, 261-267.	1.6	15
17	Performance assessment of a vertical flow constructed wetland treating unsettled combined sewer overflow. Water Science and Technology, 2017, 75, 2586-2597.	1.2	12
18	Filling hydraulics and nitrogen dynamics in constructed wetlands treating combined sewer overflows. Ecological Engineering, 2017, 101, 137-144.	1.6	12

#	Article	IF	CITATIONS
19	Which plants are needed for a French vertical-flow constructed wetland under a tropical climate?. Water Science and Technology, 2017, 75, 1873-1881.	1.2	20
20	Constructed wetlands and solar-driven disinfection technologies for sustainable wastewater treatment and reclamation in rural India: SWINGS project. Water Science and Technology, 2017, 76, 1474-1489.	1.2	33
21	Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands. Water Science and Technology, 2017, 76, 124-133.	1.2	8
22	Using numerical simulation of a one stage vertical flow wetland to optimize the depth of a zeolite layer. Water Science and Technology, 2017, 75, 650-658.	1.2	11
23	High-frequency measurement of N 2 O emissions from a full-scale vertical subsurface flow constructed wetland. Ecological Engineering, 2017, 108, 240-248.	1.6	14
24	Effects of design and operational parameters on ammonium removal by single-stage French vertical flow filters treating raw domestic wastewater. Ecological Engineering, 2016, 97, 516-523.	1.6	30
25	Natural Rock Phosphate: A Sustainable Solution for Phosphorous Removal from Wastewater. Procedia Engineering, 2016, 138, 119-126.	1.2	10
26	Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands. Water Research, 2016, 89, 355-365.	5.3	114
27	Simulation of constructed wetlands treating combined sewer overflow using HYDRUS/CW2D. Ecological Engineering, 2016, 87, 340-347.	1.6	22
28	Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to Constructed Wetlands. Journal of Environmental Management, 2016, 165, 271-279.	3.8	41
29	Influence of partial saturation on total nitrogen removal in a single-stage French constructed wetland treating raw domestic wastewater. Ecological Engineering, 2015, 77, 257-264.	1.6	57
30	Modelling constructed wetlands: Scopes and aims $\hat{a} \in \hat{a}$ a comparative review. Ecological Engineering, 2015, 80, 205-213.	1.6	55
31	Treatment performances of French constructed wetlands: results from a database collected over the last 30 years. Water Science and Technology, 2015, 71, 1333-1339.	1.2	54
32	French vertical-flow constructed wetlands in mountain areas: how do cold temperatures impact performances?. Water Science and Technology, 2015, 71, 1219-1228.	1.2	10
33	Pilot-scale study of vertical flow constructed wetland combined with trickling filter and ferric chloride coagulation: influence of irregular operational conditions. Water Science and Technology, 2015, 71, 1088-1096.	1.2	6
34	French vertical-flow constructed wetland design: adaptations for tropical climates. Water Science and Technology, 2015, 71, 1516-1523.	1.2	27
35	Influence of the water saturation level on phosphorus retention and treatment performances of vertical flow constructed wetland combined with trickling filter and FeCl3 injection. Ecological Engineering, 2015, 80, 53-61.	1.6	20
36	Constructed wetlands treating stormwater from separate sewer networks in a residential Strasbourg urban catchment area: Micropollutant removal and fate. Journal of Environmental Chemical Engineering, 2015, 3, 2816-2824.	3.3	39

#	Article	IF	CITATIONS
37	French vertical flow constructed wetlands: a need of a better understanding of the role of the deposit layer. Water Science and Technology, 2014, 69, 106-112.	1.2	55
38	Simplified hydraulic model of French vertical-flow constructed wetlands. Water Science and Technology, 2014, 70, 909-916.	1.2	8
39	Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitation for domestic and winery wastewaters treatment. Ecological Engineering, 2014, 71, 41-47.	1.6	52
40	Modeling nitrogen removal in a vertical flow constructed wetland treating directly domestic wastewater. Ecological Engineering, 2014, 70, 379-386.	1.6	26
41	Characterizing hydraulic properties of filter material of a vertical flow constructed wetland. Ecological Engineering, 2013, 60, 325-335.	1.6	15
42	Modeling constructed wetlands with variably saturated vertical subsurface-flow for urban stormwater treatment. Ecological Engineering, 2013, 55, 1-8.	1.6	17
43	Diagnosis of domestic wastewater sand filters. Water Management, 2013, 166, 57-69.	0.4	1
44	Constructed Wetlands for Combined Sewer Overflow Treatmentâ€"Comparison of German, French and Italian Approaches. Water (Switzerland), 2013, 5, 1-12.	1.2	47
45	Modelling aerobic biodegradation in vertical flow sand filters: Impact of operational considerations on oxygen transfer and bacterial activity. Water Research, 2012, 46, 2270-2280.	5.3	21
46	Recirculation on a single stage of vertical flow constructed wetland: Treatment limits and operation modes. Ecological Engineering, 2012, 43, 81-84.	1.6	49
47	Mechanical and hydraulic properties of sludge deposit on sludge drying reed beds (SDRBs): Influence of sludge characteristics and loading rates. Bioresource Technology, 2012, 116, 161-169.	4.8	16
48	Surface characterization of natural apatites used to remove phosphates from wastewater in constructed wetlands: which techniques to use?. Materiaux Et Techniques, 2012, 100, 191-199.	0.3	0
49	Solid respirometry to characterize nitrification kinetics: A better insight for modelling nitrogen conversion in vertical flow constructed wetlands. Water Research, 2011, 45, 4995-5004.	5 . 3	11
50	Ecological services of artificial wetland for pesticide mitigation Socio-technical adaptation for watershed management through TRUSTEA project feedback. Procedia Environmental Sciences, 2011, 9, 183-190.	1.3	5
51	Phosphorus removal by the use of apatite in constructed wetlands: Design recommendations. Water Practice and Technology, $2011, 6, .$	1.0	15
52	Sludge drying reed beds for septage treatment: Towards design and operation recommendations. Bioresource Technology, 2011, 102, 8327-8330.	4.8	32
53	Performance evaluation of phosphorus removal by apatite in constructed wetlands treating domestic wastewater: column and pilot experiments. International Journal of Environmental Analytical Chemistry, 2011, 91, 740-752.	1.8	9
54	Phosphorus removal by apatite in horizontal flow constructed wetlands for small communities: pilot and full-scale evidence. Water Science and Technology, 2011, 63, 1629-1637.	1.2	17

#	Article	IF	CITATIONS
55	Lessons Gained from French R&D Programs for Pesticides Dissipation by Use of Constructed Wetlands. , 2010, , .		0
56	Sludge drying reed beds: full- and pilot-scale study for activated sludge treatment. Water Science and Technology, 2009, 60, 1145-1154.	1.2	18
57	Treatment of septage in sludge drying reed beds: a case study on pilot-scale beds. Water Science and Technology, 2009, 60, 643-653.	1.2	29
58	Two-phase flow modelling for oxygen renewal estimation in vertical flow filter: luxury or necessity?. Water Science and Technology, 2009, 59, 2311-2319.	1.2	7
59	Removal of bacterial and viral indicator in vertical flow constructed wetlands and intermittent sand filters. Desalination, 2009, 246, 169-178.	4.0	46
60	Influence of the physical and mechanical characteristics of sands on the hydraulic and biological behaviors of sand filters. Desalination, 2009, 248, 998-1007.	4.0	32
61	Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent. Water Research, 2009, 43, 1851-1858.	5.3	100
62	Potential for total nitrogen removal by combining vertical flow and horizontal flow constructed wetlands: A full-scale experiment study. Ecological Engineering, 2008, 34, 23-29.	1.6	129
63	Improvement of Sand Filter and Constructed Wetland Design using an Environmental Decision Support System. Journal of Environmental Quality, 2008, 37, 1644-1647.	1.0	4
64	Effect of reeds and feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads. Water Research, 2006, 40, 606-612.	5.3	131
65	Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands. Water Science and Technology, 2005, 51, 193-203.	1.2	74
66	How to treat raw sewage with constructed wetlands: an overview of the French systems. Water Science and Technology, 2005, 51, 11-21.	1.2	227
67	Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions. Water Science and Technology, 2003, 48, 75-83.	1.2	53