Matheus Correa-Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8791298/publications.pdf

Version: 2024-02-01

623734 888059 1,163 17 14 17 citations g-index h-index papers 17 17 17 2243 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. Journal of the American Society of Nephrology: JASN, 2015, 26, 1877-1888.	6.1	378
2	Soluble Uric Acid Activates the NLRP3 Inflammasome. Scientific Reports, 2017, 7, 39884.	3.3	259
3	MyD88 Signaling Pathway Is Involved in Renal Fibrosis by Favoring a TH2 Immune Response and Activating Alternative M2 Macrophages. Molecular Medicine, 2012, 18, 1231-1239.	4.4	94
4	Pivotal Role of Toll-Like Receptors 2 and 4, Its Adaptor Molecule MyD88, and Inflammasome Complex in Experimental Tubule-Interstitial Nephritis. PLoS ONE, 2011, 6, e29004.	2.5	83
5	Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget, 2018, 9, 25808-25825.	1.8	64
6	Transcriptome Analysis of Renal Ischemia/Reperfusion Injury and Its Modulation by Ischemic Pre-Conditioning or Hemin Treatment. PLoS ONE, 2012, 7, e49569.	2.5	45
7	CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. Inflammopharmacology, 2018, 26, 403-411.	3.9	42
8	Activation of platelet-activating factor receptor exacerbates renal inflammation and promotes fibrosis. Laboratory Investigation, 2014, 94, 455-466.	3.7	39
9	Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring. Toxicology and Applied Pharmacology, 2014, 278, 266-274.	2.8	30
10	Macrophage Trafficking as Key Mediator of Adenine-Induced Kidney Injury. Mediators of Inflammation, 2014, 2014, 1-12.	3.0	28
11	Protective role of NKT cells and macrophage M2-driven phenotype in bleomycin-induced pulmonary fibrosis. Inflammopharmacology, 2018, 26, 491-504.	3.9	21
12	The lack of PI3K \hat{I}^3 favors M1 macrophage polarization and does not prevent kidney diseases progression. International Immunopharmacology, 2018, 64, 151-161.	3.8	18
13	Cytoprotection behind heme oxygenase-1 in renal diseases. World Journal of Nephrology, 2012, 1, 4.	2.0	18
14	Formaldehyde inhalation during pregnancy abolishes the development of acute innate inflammation in offspring. Toxicology Letters, 2015, 235, 147-154.	0.8	17
15	Inflammatory milieu as an early marker of kidney injury in offspring rats from diabetic mothers. European Journal of Pharmacology, 2012, 689, 233-240.	3.5	10
16	Early infiltration of p40IL12 ⁺ CCR7 ⁺ CD11b ⁺ cells is critical for fibrosis development. Immunity, Inflammation and Disease, 2016, 4, 300-314.	2.7	9
17	Administration of \hat{l}_{\pm} -Galactosylceramide Improves Adenine-Induced Renal Injury. Molecular Medicine, 2015, 21, 553-562.	4.4	8