Zegang Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8790762/publications.pdf Version: 2024-02-01

ZECANC OUL

#	Article	IF	CITATIONS
1	Nitrogen-Doped Porous Two-dimensional Carbon Nanosheets Derived from ZIF-8 as Multifunctional Supports of Ru Nanoparticles for Hydrogenation of Benzoic Acid. Catalysis Letters, 2023, 153, 388-397.	2.6	4
2	One-step conversion of lignin-derived alkylphenols to light arenes by co-breaking of C–O and C–C bonds. New Journal of Chemistry, 2022, 46, 2710-2721.	2.8	5
3	Ni nanoparticles embedded in nitrogen doped carbon derived from metal–organic frameworks for the efficient hydrogenation of vanillin to vanillyl alcohol. New Journal of Chemistry, 2022, 46, 10347-10356.	2.8	6
4	CoZn/N-Doped porous carbon derived from bimetallic zeolite imidazolate framework/g-C ₃ N ₄ for efficient hydrodeoxygenation of vanillin. Catalysis Science and Technology, 2022, 12, 5178-5188.	4.1	8
5	Effect of Ni loading and impregnation method on the hydrodenitrogenation of coal tar over Ni-Mo/Î ³ -Al2O3. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-13.	2.3	0
6	Biomass-derived N-doped porous two-dimensional carbon nanosheets supported ruthenium as effective catalysts for the selective hydrogenation of quinolines under mild conditions. Catalysis Communications, 2020, 143, 106048.	3.3	22
7	Full N,N-Methylation of 4,4′-Methylenedianiline with Dimethyl Carbonate: A Feasible Access to 4,4′-Methylene bis(N,N-Dimethylaniline). Journal of Chemistry, 2018, 2018, 1-10.	1.9	1
8	MCM-41 Supports Modified by Al, Zr and Ti for NiW Hydrodenitrogenation Catalysts. Catalysis Letters, 2014, 144, 1584-1593.	2.6	12
9	The effects of MCM-41's calcination temperature on the structure and hydrodenitrogenation over NiW catalysts. Korean Journal of Chemical Engineering, 2014, 31, 1973-1979.	2.7	2
10	Effects of Impregnation Methods and Drying Conditions on Quinoline Hydrodenitrogenation over Ni-W Based Catalysts. Journal of the Brazilian Chemical Society, 2014, , .	0.6	2
11	Formation of Intermediate and By-products in Synthesis of 4,4′-Methylenedimethyldiphenylcarbamate. Catalysis Letters, 2008, 124, 243-249.	2.6	8