Robin S Waples

List of Publications by Year

 in descending order[^0]

1 Pseudoreplication in genomicâ€scale data sets. Molecular Ecology Resources, 2022, 22, 503-518. 4.8

2 Closeâ \in kin methods to estimate census size and effective population size. Fish and Fisheries, 2022, 23, 273-293.

Implications of Large-Effect Loci for Conservation: A Review and Case Study with Pacific Salmon.
3 Journal of Heredity, 2022, 113, 121-144.
2.4

25

4 What Is<i>N</i>e, Anyway?. Journal of Heredity, 2022, 113, 371-379.
2.4

40
$5 \quad$ <scp 5 <i><scp>TheWeight</scp></i></scp>: A simple and flexible algorithm for simulating nonâ fideal,
ageâ€structured populations. Methods in Ecology and Evolution, 2022, 13, 2030-2041.

6 Comparison of three techniques for genetic estimation of effective population size in a critically endangered parrot. Animal Conservation, 2021, 24, 491-498.
2.9

Detecting population declines via monitoring the effective number of breeders
Detecting population declines via monitoring the effective number of breeder
$(\langle i\rangle \mathrm{N}\langle/ \mathrm{i}\rangle\langle$ sub $\rangle \mathrm{b}\langle/$ sub $\rangle)$. Molecular Ecology Resources, 2021, 21, 379-393.
4.8

24

Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field.
Journal of Heredity, 2021, 112, 313-327.

Relative Precision of the Sibship and LD Methods for Estimating Effective Population Size With
9 Genomics-Scale Datasets. Journal of Heredity, 2021, 112, 535-539.

Conservation and Management of Salmon in the Age of Genomics. Annual Review of Animal
Biosciences, 2020, 8, 117-143.

11 An estimator of the Opportunity for Selection that is independent of mean fitness. Evolution;
International Journal of Organic Evolution, 2020, 74, 1942-1953.

12 Serendipity and me. ICES Journal of Marine Science, 2020, 77, 1658-1665.
2.5

3
<i>AgeStrucNb $</ \mathrm{i}\rangle$: Software for Simulating and Detecting Changes in the Effective Number of
Breeders (<i>N</i>b). Journal of Heredity, 2020, 111, 491-497.

Genomic signatures and correlates of widespread population declines in salmon. Nature
Communications, 2019, 10, 2996.
12.8

Life history and temporal variability of escape events interactively determine the fitness consequences
of aquaculture escapees on wild populations. Theoretical Population Biology, 2019, 129, 93-102.
1.1

10

The evolution of microendemism in a reef fish (<i>Hypoplectrus maya</i>). Molecular Ecology, 2019,
28, 2872-2885.

Rigorous monitoring of a large-scale marine stock enhancement program demonstrates the need for
comprehensive management of fisheries and nursery habitat. Scientific Reports, 2019, 9, 5290.
3.3

27

Estimating effective population size of large marine populations, is it feasible?. Fish and Fisheries, 2019,
20, 189-198.
Robust estimates of a high $\langle i\rangle N\langle\mid i\rangle\langle s u b\rangle e\langle/ s u b\rangle \mid\langle i\rangle N\langle\mid i\rangle$ ratio in a top marine predator, southern
bluefin tuna. Science Advances, 2018, 4, eaar7759.

Is the Red Wolf a Listable Unit Under the US Endangered Species Act?. Journal of Heredity, 2018, 109, 585-597.
Purging putative siblings from population genetic data sets: a cautionary view. Molecular Ecology,
$2017,26,1211-1224$.
26 Humanâ€mediated evolution in a threatened species? Juvenile lifeâ€history changes in Snake River salmon.Evolutionary Applications, 2017, 10, 667-681.3.1
28 Genotype-based estimates of local abundance and effective population size for Hector's dolphins.
Biological Conservation, 2017, 211, 150-160.
29 Consistent Extinction Risk Assessment under the U.S. Endangered Species Act. Conservation Letters,
2017, 10, 328-336.
5.7 11Effective number of breeders from sibship reconstruction: empirical evaluations using hatchery
3.154
steelhead. Evolutionary Applications, 2017, 10, 146-160.Fisheryâ€induced evolution provides insights into adaptive responses of marine species to climate4.037change. Frontiers in Ecology and the Environment, 2016, 14, 217-224.32 Making sense of genetic estimates of effective population size. Molecular Ecology, 2016, 25, 4689-4691.3.948Tiny estimates of the $\langle i\rangle N\langle\mid i\rangle\langle s u b\rangle e<|s u b\rangle|\langle i\rangle N<| i\rangle$ ratio in marine fishes: Are they real?. Journal of
1.6 70
Fish Biology, 2016, 89, 2479-2504.

37	Climate science strategy of the US National Marine Fisheries Service. Marine Policy, 2016, 74, 58-67.	3.2	54
38	Life-history traits and effective population size in species with overlapping generations revisited: the importance of adult mortality. Heredity, 2016, 117, 241-250.	2.6	38
39	Evaluating the Rymanâ $€^{\text {"L Laikre effect for marine stock enhancement and aquaculture. Environmental }}$ Epigenetics, 2016, 62, 617-627.	1.8	41
40	Trends and management implications of humanâ€influenced lifeâ€history changes in marine ectotherms. Fish and Fisheries, 2016, 17, 1005-1028.	5.3	76
41	Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evolutionary Applications, 2015, 8, 956-971.	3.1	47
42	Temporal correlations in population trends: Conservation implications from time-series analysis of diverse animal taxa. Biological Conservation, 2015, 192, 247-257.	4.1	52
43	Testing for Hardyâ€"Weinberg Proportions: Have We Lost the Plot?. Journal of Heredity, 2015, 106, 1-19.	2.4	290

$$
44 \quad \text { Artificial propagation of freshwater fishes: benefits and risks to recipient ecosystems from stocking, }
$$

translocation and re-introduction. , 2015, , 399-436.

45	Effects of Overlapping Generations on Linkage Disequilibrium Estimates of Effective Population Size. Genetics, 2014, 197, 769-780.	2.9	299
46	<scp>NeEstimator</scp> v2: reâ $\mathrm{E}_{\mathrm{imp}}$ (effective population size (<i> $\mathrm{N}<\mathrm{i}\rangle\langle$ sub> <i>e</i><\|sub>) from genetic data. Molecular Ecology Resources, 2014, 14, 209-214.	4.8	1,584
47	INTERMITTENT BREEDING AND CONSTRAINTS ON LITTER SIZE: CONSEQUENCES FOR EFFECTIVE POPULATION SIZE PER GENERATION (<i>N_e</i>) AND PER REPRODUCTIVE CYCLE (<i>N_b</i>). Evolution; International Journal of Organic Evolution, 2014, 68, 1722-1734.	2.3	48
48	Combining demographic and genetic factors to assess population vulnerability in stream species. Ecological Applications, 2014, 24, 1505-1524.	3.8	34
49	Genetic Monitoring of Threatened Chinook Salmon Populations: Estimating Introgression of Nonnative Hatchery Stocks and Temporal Genetic Changes. North American Journal of Fisheries Management, 2013, 33, 693-706.	1.0	15

50 Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings
2.6

173 of the Royal Society B: Biological Sciences, 2013, 280, 20131339.
$2.6 \quad 173$
51

> Accounting for missing data in the estimation of contemporary genetic effective population size (N<sub>e<|sub>). Molecular Ecologv Resources. 2013. 13.243-253.

Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity, 2013, 111, 189-199.

[^1]4.9

84

```
55 Introduction. Conservation Biology, 2013, 27, 1137-1137.
4.7
```

3

56 Genetic diversity in the Snake River sockeye salmon captive broodstock program as estimated from

57 Detecting population recovery using gametic disequilibrium-based effective population size estimates.
$0.8 \quad 8$
Conservation Genetics Resources, 2012, 4, 987-989.

58 Red flags: correlates of impaired species recovery. Trends in Ecology and Evolution, 2012, 27, 542-546.
$8.7 \quad 34$

59	Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity, $2012,109,254-260$.
60	Population Genetic Structure and Life History Variability in <i> Oncorhynchus nerka</i> from the Snake River Basin. Transactions of the American Fisheries Society, 2011, 140, 716-733.
61	104
Cenetic Monitoring Reveals Genetic Stability within and among Threatened Chinook Salmon Populations in the Salmon River, Idaho. North American Journal of Fisheries Management, 2011, 31, $96-105$.	1.4

62 Inbreeding effective population size and parentage analysis without parents. Molecular Ecology
Resources, 2011, 11, 162-171.
$4.8 \quad 42$

hybrid Felsenstein-Hill approach. Ecology, 2011, 92, 1513-1522.
65 Interacting Effects of Phenotypic Plasticity and Evolution on Population Persistence in a Changing
Climate. Conservation Biology, 2011, 25, 56-63.
$4.7 \quad 245$

Understanding and Estimating Effective Population Size for Practical Application in Marine Species
4.7

270
66 Management. Conservation Biology, 2011, 25, 438-449.
.
67 Estimating Contemporary Effective Population Size on the Basis of Linkage Disequilibrium in the Face
2.9

201
of Migration. Genetics, 2011, 189, 633-644.

Early detection of population fragmentation using linkage disequilibrium estimation of effective
population size. Conservation Genetics, 2010, 11, 2425-2430.
1.5

44

```
Linkage disequilibrium estimates of contemporary \(\langle i\rangle N\langle/ i\rangle\langle s u b\rangle e</ s u b\rangle\) using highly variable genetic
69 markers: a largely untapped resource for applied conservation and evolution. Evolutionary
Applications, 2010, 3, 244-262.
```

$3.1 \quad 777$

Highâ€grading bias: subtle problems with assessing power of selected subsets of loci for population
assignment. Molecular Ecology, 2010, 19, 2599-2601.

71 Integrating evolutionary considerations into recovery planning for Pacific salmon. , 2010, , 239-266.

Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3391-3400.

Spatialâ€temporal stratifications in natural populations and how they affect understanding and
Genetic and Evolutionary Considerations in Fishery Management: Research Needs for the Future. ,
$2009,427-451$.
81 Integrating genetic data into management of marine resources: how can we do it better?. Fish and

```
83 Evolutionary history of Pacific salmon in dynamic environments. Evolutionary Applications, 2008, 1,
189-206.
189-206.
```

$3.1 \quad 133$
$3.1 \quad 50$
Potential for anthropogenic disturbances to influence evolutionary change in the life history of a
84 threatened salmonid. Evolutionary Applications, 2008, 1, 271-285.

$85 \quad$| <scp >\|dne</scp>: a program for estimating effective population size from data on linkage |
| :--- |
| disequilibrium. Molecular Ecology Resources, $2008,8,753-756$. |

An improved method for predicting the accuracy of genetic stock identification. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 1475-1486.
1.4

210

Temporal Estimates of Effective Population Size in Species With Overlapping Generations. Genetics,
$2007,175,219-233$.
2.9

162
95 Empirical Results of Salmon Supplementation in the Northeast Pacific: A Preliminary Assessment. ,
$2007,383-403$.

96 salmonnb: a program for computing cohort-specific effective population sizes (Nb) in Pacific salmon and other semelparous species using the temporal method. Molecular Ecology Notes, 2006, 7, 21-24.
1.7

13
What is a population? An empirical evaluation of some genetic methods for identifying the number of
gene pools and their degree of connectivity. Molecular Ecology, 2006, 15, 1419-1439.

98 A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci*. Conservation Genetics, 2006, 7, 167-184.
1.5

667

$$
99 \quad \text { Seed Banks, Salmon, and Sleeping Genes: Effective Population Size in Semelparous, Ageâ€Structured }
$$

Species with Fluctuating Abundance. American Naturalist, 2006, 167, 118-135.

100 Genetic estimates of contemporary effective population size: to what time periods do the estimates apply?. Molecular Ecology, 2005, 14, 3335-3352.
109 Characterizing diversity in salmon from the Pacific Northwest*. Journal of Fish Biology, 2001, 59, 1-41. 4.6

110 Evolution of Sockeye Salmon Ecotypes. Science, 2001, 291, 251b-252.
12.6

7

111 Dispelling Some Myths about Hatcheries. Fisheries, 1999, 24, 12-21. 214

112 Prioritizing Pacific Salmon Stocks for Conservation: Response to Allendorf et al.. Conservation

113	Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. $1998,89,438-450$.
114	4,016
Evolutionarily Significant Units, Distinct Population Segments, and the Endangered Species Act: Reply to Pennock and Dimmick. Conservation Biology, 1998, 12, 718-721.	4.7
115	19

116 Conservation and Genetics of Salmonid Fishes. , 1996, , 238-280.

117	Genetic Risk Associated with Supplementation of Pacific Salmonids: Captive Broodstock Programs. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 310-329.	1.4	119
118	Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture, 1992, 108, 215-232.	3.5	148
119	Genetic interactions Between Hatchery and Wild Salmonids: Lessons from the Pacific Northwest. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48, 124-133.	1.4	347
120	Conservation Genetics of Pacific Salmon. II. Effective Population Size and the Rate of Loss of Genetic Variability. Journal of Heredity, 1990, 81, 267-276.	2.4	130
121	Conservation Genetics of Pacific Salmon I. Temporal Changes in Allele Frequency. Conservation Biology, 1990, 4, 144-156.	4.7	145

Conservation Genetics of Pacific Salmon. III. Estimating Effective Population Size. Journal of Heredity,
$1990,81,277-289$.
2.4

111

TEMPORAL VARIATION IN ALLELE FREQUENCIES: TESTING THE RIGHT HYPOTHESIS. Evolution; International
Journal of Organic Evolution, 1989, 43, 1236-1251.
2.3

95

A generalized approach for estimating effective population size from temporal changes in allele frequency.. Genetics, 1989, 121, 379-391.

[^0]: Source: https:/|exaly.com/author-pdf/8790518/publications.pdf
 Version: 2024-02-01

[^1]: 53
 A Tale of Two Acts: Endangered Species Listing Practices in Canada and the United States. BioScience,
 $2013,63,723-734$.

