Robin S Waples

List of Publications by Year

 in descending order[^0]

1	<scp> NeEstimator</scp> v2: reâ€implementation of software for the estimation of contemporary effective population size (<i>N<\|i><sub><i>e</i><\|sub>) from genetic data. Molecular Ecology Resources, 2014, 14, 209-214.	4.8	1,584
2	What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 2006, 15, 1419-1439.	3.9	1,266
3	<scp>\|dne</scp>: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 2008, 8, 753-756.	4.8	1,071
4	Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species., 1998, 89, 438-450.		1,016
5	Genetic monitoring as a promising tool for conservation and management. Trends in Ecology and Evolution, 2007, 22, 25-33.	8.7	934
6	Linkage disequilibrium estimates of contemporary <i>N</i>_e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications, 2010, 3, 244-262.	3.1	777
7	A generalized approach for estimating effective population size from temporal changes in allele frequency.. Genetics, 1989, 121, 379-391.	2.9	695

8 A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci*. Conservation Genetics, 2006, 7, 167-184.
1.5

667

9 Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology
$9 \quad$ and Evolution, 2005, 20, 136-142.

10 Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals.
Trends in Ecology and Evolution, 2010, 25, 520-529.
11 Phenotypic plasticity and population viability: the importance of environmental predictability.
Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3391-3400.

Genetic interactions Between Hatchery and Wild Salmonids: Lessons from the Pacific Northwest.
12 Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48, 124-133.
1.4

347

13 Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates.
Molecular Ecology, 2007, 16, 1149-1166.

Effects of Overlapping Generations on Linkage Disequilibrium Estimates of Effective Population Size.
Genetics, 2014, 197, 769-780.
2.9

299

Cenetics, 2014, 197,769-780.
3.9

324

14

15 Testing for Hardyâ€"Weinberg Proportions: Have We Lost the Plot?. Journal of Heredity, 2015, 106, 1-19.
2.4

290

Understanding and Estimating Effective Population Size for Practical Application in Marine Species
Management. Conservation Biology, 2011, 25, 438-449.

Pacific Salmon Extinctions: Quantifying Lost and Remaining Diversity. Conservation Biology, 2007, 21,
1009-1020.
Integrating genetic data into management of marine resources: how can we do it better?. Fish and
Fisheries, 2008, 9, 423-449.

20 Genetic estimates of contemporary effective population size: to what time periods do the estimates

Interacting Effects of Phenotypic Plasticity and Evolution on Population Persistence in a Changing
4.7
An improved method for predicting the accuracy of genetic stock identification. Canadian Journal of
Fisheries and Aquatic Sciences, 2008, 65, 1475-1486.

24 Conservation and Genetics of Salmonid Fishes. , 1996, , 238-280.

25	Estimating Contemporary Effective Population Size on the Basis of Linkage Disequilibrium in the Face of Migration. Genetics, 2011, 189, 633-644.	2.9	201
26	LIFE-HISTORY DIVERGENCE IN CHINOOK SALMON: HISTORIC CONTINGENCY AND PARALLEL EVOLUTION. Evolution; International Journal of Organic Evolution, 2004, 58, 386-403.	2.3	196
27	Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity, 2016, 117, 233-240.	2.6	181
28	Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131339.	2.6	173
29	Temporal Estimates of Effective Population Size in Species With Overlapping Generations. Genetics, 2007, 175, 219-233.	2.9	162
30	Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture, 1992, 108, 215-232.	3.5	148
31	Conservation Genetics of Pacific Salmon I. Temporal Changes in Allele Frequency. Conservation Biology, 1990, 4, 144-156.	4.7	145

32 Purging putative siblings from population genetic data sets: a cautionary view. Molecular Ecology,
programs, and genetic compensation between life-history forms. Molecular Ecology, 2007, 16, 953-966.
Estimation of effective population size in continuously distributed populations: there goes the
neighborhood. Heredity, 2013, 111, 189-199.
29
40 Conservation Genetics of Pacific Salmon. Ill. Estimating Effective Population Size. Journal of Heredity,
1990, 81, 277-289.
TEMPORAL VARIATION IN ALLELE FREQUENCIES: TESTING THE RIGHT HYPOTHESIS. Evolution; Internatio
Journal of Organic Evolution, 1989, 43, 1236-1251.

A Tale of Two Acts: Endangered Species Listing Practices in Canada and the United States. BioScience, 2013, 63, 723-734.
4.9

84

When are genetic methods useful for estimating contemporary abundance and detecting population
4.8

82
trends?. Molecular Ecology Resources, 2010, 10, 684-692.

Trends and management implications of humanâ€influenced lifeâ€history changes in marine ectotherms.
Fish and Fisheries, 2016, 17, 1005-1028.
5.3

76

LIFE-HISTORY DIVERGENCE IN CHINOOK SALMON: HISTORIC CONTINGENCY AND PARALLEL EVOLUTION.
Evolution; International Journal of Organic Evolution, 2004, 58, 386.
2.3

73

Tiny estimates of the $\langle\mathrm{i}\rangle \mathrm{N}\langle\mid \mathrm{i}\rangle\langle\mathrm{sub}\rangle \mathrm{e}\langle\mid \mathrm{sub}\rangle|\langle\mathrm{i}\rangle \mathrm{N}<| \mathrm{i}\rangle$ ratio in marine fishes: Are they real?. Journal of
Temporal correlations in population trends: Conservation implications from time-series analysis of
diverse animal taxa. Biological Conservation, 2015, 192, 247-257.
61 Estimating effective population size of large marine populations, is it feasible?. Fish and Fisheries, 2019, 20, 189-198.

Potential for anthropogenic disturbances to influence evolutionary change in the life history of a threatened salmonid. Evolutionary Applications, 2008, 1, 271-285.

65	INTERMITTENT BREEDING AND CONSTRAINTS ON LITTER SIZE: CONSEQUENCES FOR EFFECTIVE POPULATION SIZE PER GENERATION (<i>N_e</i>) AND PER REPRODUCTIVE CYCLE (<i>N_b<\|i>). Evolution; International Journal of Organic Evolution, 2014, 68, 1722-1734.	2.3	48
66	Making sense of genetic estimates of effective population size. Molecular Ecology, 2016, 25, 4689-4691.	3.9	48
67	Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evolutionary Applications, 2015, 8, 956-971.	3.1	47

68 Robust estimates of a high $\langle\mathrm{i}\rangle \mathrm{N}\langle\mid \mathrm{i}\rangle\langle$ sub \rangle e</sub> | $\langle\mathrm{i}\rangle \mathrm{N}<|\mathrm{i}\rangle$ ratio in a top marine predator, southern bluefin tuna. Science Advances, 2018, 4, eaar7759.
Inbreeding effective population size and parentage analysis without parents. Molecular Ecolog.
Resources, 2011, 11, 162-171.

Evaluating the Rymanâ€"Laikre effect for marine stock enhancement and aquaculture. Environmental

Fisheryâ€induced evolution provides insights into adaptive responses of marine species to climate
change. Frontiers in Ecology and the Environment, 2016, 14, 217-224.Conservation and Management of Salmon in the Age of Genomics. Annual Review of Animal
Biosciences, 2020, 8, 117-143.

[^1]| 91 | Modelling evolutionary processes in small populations: not as ideal as you think. Molecular Ecology, 2009, 18, 1834-1847. | 3.9 | 22 |
| :---: | :---: | :---: | :---: |
| 92 | Genetic diversity in the Snake River sockeye salmon captive broodstock program as estimated from broodstock records. Conservation Genetics, 2012, 13, 1183-1193. | 1.5 | 21 |
| 93 | Genetic and Evolutionary Considerations in Fishery Management: Research Needs for the Future. , 2009, , 427-451. | | 21 |
| 94 | Sex change and effective population size: implications for population genetic studies in marine fish. Heredity, 2016, 117, 251-258. | 2.6 | 20 |
| 95 | Evolutionarily Significant Units, Distinct Population Segments, and the Endangered Species Act: Reply to Pennock and Dimmick. Conservation Biology, 1998, 12, 718-721. | 4.7 | 19 |
| 96 | Humanâ€mediated evolution in a threatened species? Juvenile lifeâ€history changes in Snake River salmon. Evolutionary Applications, 2017, 10, 667-681. | 3.1 | 19 |
| 97 | Null Alleles and FIS Ã- FST Correlations. Journal of Heredity, 2018, 109, 457-461. | 2.4 | 18 |
| 98 | Accounting for Age Structure and Spatial Structure in Eco-Evolutionary Analyses of a Large, Mobile Vertebrate. Journal of Heredity, 2018, 109, 709-723. | 2.4 | 17 |
| 99 | An estimator of the Opportunity for Selection that is independent of mean fitness. Evolution; International Journal of Organic Evolution, 2020, 74, 1942-1953. | 2.3 | 16 |

100 Pseudoreplication in genomicâ€scale data sets. Molecular Ecology Resources, 2022, 22, 503-518. 4.8
101 A potential bias in the temporal method for estimating Nein admixed populations under natural
101 selection. Molecular Ecology, 2007, 16, 2261-2271.
15
102 Eco-evolutionary dynamics: fluctuations in population growth rate reduce effective population sizein chinook salmon. Ecology, 2010, 91, 902-914.
3.2 15Population Genetic Structure and Life History Variability in <i>Oncorhynchus nerka</i> from theSnake River Basin. Transactions of the American Fisheries Society, 2011, 140, 716-733.Genetic Monitoring of Threatened Chinook Salmon Populations: Estimating Introgression of104 Nonnative Hatchery Stocks and Temporal Genetic Changes. North American Journal of Fisheries1.015Management, 2013, 33, 693-706.
105 Performance of IUCN proxies for generation length. Conservation Biology, 2017, 31, 883-893. 4.7 15
Prioritizing Pacific Salmon Stocks for Conservation: Response to Allendorf et al.. Conservation 4.7 13

109	Consistent Extinction Risk Assessment under the U.S. Endangered Species Act. Conservation Letters, 2017, 10, 328-336.	5.7	11		
110	Comparison of three techniques for genetic estimation of effective population size in a critically endangered parrot. Animal Conservation, 2021, 24, 491-498.	2.9	11		
111	Life history and temporal variability of escape events interactively determine the fitness consequences of aquaculture escapees on wild populations. Theoretical Population Biology, 2019, 129, 93-102.	1.1	10		
112	The evolution of microendemism in a reef fish (<i>Hypoplectrus maya</i>). Molecular Ecology, 2019, 28, 2872-2885.	3.9	10		
113	Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. Journal of Heredity, 2021, 112, 313-327.	2.4	10		
114	Genotype-based estimates of local abundance and effective population size for Hector's dolphins. Biological Conservation, 2017, 211, 150-160.	4.1	9		
115	Detecting population recovery using gametic disequilibrium-based effective population size estimates. Conservation Genetics Resources, 2012, 4, 987-989.	0.8	8		
116	Relative Precision of the Sibship and LD Methods for Estimating Effective Population Size With Genomics-Scale Datasets. Journal of Heredity, 2021, 112, 535-539.	2.4	8		
117	Normativity Redux. Conservation Biology, 2007, 21, 1649-1650.	4.7	7		
118	Evolution of Sockeye Salmon Ecotypes. Science, 2001, 291, 251 b -252.	12.6	7		
119	<scp> <i><scp> TheWeight<\|scp> <	i> <	scp>: A simple and flexible algorithm for simulating nonâ €ideal, ageâ€structured populations. Methods in Ecology and Evolution, 2022, 13, 2030-2041.	5.2	6
120	Legal Viability, Societal Values, and SPOIR: Response to D'Elia et al.. Conservation Biology, 2008, 22, 1075-1077.	4.7	4		
121	Artificial propagation of freshwater fishes: benefits and risks to recipient ecosystems from stocking, translocation and re-introduction. , 2015, , 399-436.		4		

122 Integrating evolutionary considerations into recovery planning for Pacific salmon. , 2010, , 239-266.
3

123 Introduction. Conservation Biology, 2013, 27, 1137-1137.
4.7

3

[^0]: Source: https:/|exaly.com/author-pdf/8790518/publications.pdf
 Version: 2024-02-01

[^1]: Genetic Monitoring Reveals Genetic Stability within and among Threatened Chinook Salmon
 89 Populations in the Salmon River, Idaho. North American Journal of Fisheries Management, 2011, 31 ,

