Kaitlin H Wade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8790454/publications.pdf Version: 2024-02-01

Κλιτιικί Η Μλαδε

#	Article	IF	CITATIONS
1	The MR-Base platform supports systematic causal inference across the human phenome. ELife, 2018, 7, .	2.8	3,639
2	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	9.4	676
3	Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell, 2019, 177, 587-596.e9.	13.5	516
4	Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. American Journal of Clinical Nutrition, 2016, 103, 965-978.	2.2	437
5	Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis. Nature Communications, 2019, 10, 333.	5.8	240
6	The Role of Obesity, Type 2 Diabetes, and Metabolic Factors in Pancreatic Cancer: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2017, 109, .	3.0	185
7	BMI as a Modifiable Risk Factor for Type 2 Diabetes: Refining and Understanding Causal Estimates Using Mendelian Randomization. Diabetes, 2016, 65, 3002-3007.	0.3	144
8	Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nature Microbiology, 2020, 5, 1079-1087.	5.9	144
9	Causal Inference in Cancer Epidemiology: What Is the Role of Mendelian Randomization?. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 995-1010.	1.1	109
10	Associations of Body Mass and FatÂIndexesÂWith Cardiometabolic Traits. Journal of the American College of Cardiology, 2018, 72, 3142-3154.	1.2	93
11	Education, intelligence and Alzheimer's disease: evidence from a multivariable two-sample Mendelian randomization study. International Journal of Epidemiology, 2020, 49, 1163-1172.	0.9	86
12	Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Molecular Psychiatry, 2021, 26, 2056-2069.	4.1	79
13	Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study. PLoS ONE, 2017, 12, e0177875.	1.1	79
14	Influence of puberty timing on adiposity and cardiometabolic traits: A Mendelian randomisation study. PLoS Medicine, 2018, 15, e1002641.	3.9	77
15	BMI and Mortality in UK Biobank: Revised Estimates Using Mendelian Randomization. Obesity, 2018, 26, 1796-1806.	1.5	65
16	MC3R links nutritional state to childhood growth and the timing of puberty. Nature, 2021, 599, 436-441.	13.7	59
17	Assessing the Causal Role of Body Mass Index on Cardiovascular Health in Young Adults. Circulation, 2018, 138, 2187-2201.	1.6	55
18	Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nature Communications, 2018, 9, 711.	5.8	54

KAITLIN H WADE

#	Article	IF	CITATIONS
19	Loss-of-function mutations in the melanocortin 4 receptor in a UK birth cohort. Nature Medicine, 2021, 27, 1088-1096.	15.2	49
20	Association between fat mass through adolescence and arterial stiffness: a population-based study from The Avon Longitudinal Study of Parents and Children. The Lancet Child and Adolescent Health, 2019, 3, 474-481.	2.7	45
21	Determinants of Intima-Media ThicknessÂin the Young. JACC: Cardiovascular Imaging, 2021, 14, 468-478.	2.3	43
22	Assessing the causal role of adiposity on disordered eating in childhood, adolescence, and adulthood: a Mendelian randomization analysis. American Journal of Clinical Nutrition, 2017, 106, 764-772.	2.2	39
23	Common health conditions in childhood and adolescence, school absence, and educational attainment: Mendelian randomization study. Npj Science of Learning, 2021, 6, 1.	1.5	39
24	Mendelian Randomization: Application to Cardiovascular Disease. Current Hypertension Reports, 2012, 14, 29-37.	1.5	38
25	Is disrupted sleep a risk factor for Alzheimer's disease? Evidence from a two-sample Mendelian randomization analysis. International Journal of Epidemiology, 2021, 50, 817-828.	0.9	31
26	Physical activity and longevity: how to move closer to causal inference. British Journal of Sports Medicine, 2018, 52, 890-891.	3.1	29
27	Improving causality in microbiome research: can human genetic epidemiology help?. Wellcome Open Research, 2019, 4, 199.	0.9	28
28	FUT2 secretor genotype and susceptibility to infections and chronic conditions in the ALSPAC cohort. Wellcome Open Research, 2018, 3, 65.	0.9	25
29	A Phenome-Wide Mendelian Randomization Study of Pancreatic Cancer Using Summary Genetic Data. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 2070-2078.	1.1	24
30	Mendelian randomisation for nutritional psychiatry. Lancet Psychiatry,the, 2020, 7, 208-216.	3.7	23
31	Large-scale GWAS of food liking reveals genetic determinants and genetic correlations with distinct neurophysiological traits. Nature Communications, 2022, 13, 2743.	5.8	22
32	Improving causality in microbiome research: can human genetic epidemiology help?. Wellcome Open Research, 2019, 4, 199.	0.9	21
33	Associations of Y chromosomal haplogroups with cardiometabolic risk factors and subclinical vascular measures in males during childhood and adolescence. Atherosclerosis, 2018, 274, 94-103.	0.4	19
34	Effects of promoting longer-term and exclusive breastfeeding on childhood eating attitudes: a cluster-randomized trial. International Journal of Epidemiology, 2014, 43, 1263-1271.	0.9	16
35	Prospective associations between problematic eating attitudes in midchildhood and the future onset of adolescent obesity and high blood pressure. American Journal of Clinical Nutrition, 2017, 105, 306-312.	2.2	16
36	Exploring the utility of alcohol flushing as an instrumental variable for alcohol intake in Koreans. Scientific Reports, 2018, 8, 458.	1.6	15

KAITLIN H WADE

#	Article	IF	CITATIONS
37	Variation of all-cause and cause-specific mortality with body mass index in one million Swedish parent-son pairs: An instrumental variable analysis. PLoS Medicine, 2019, 16, e1002868.	3.9	14
38	Investigating the relationships between unfavourable habitual sleep and metabolomic traits: evidence from multi-cohort multivariable regression and Mendelian randomization analyses. BMC Medicine, 2021, 19, 69.	2.3	14
39	Variation in the SLC23A1 gene does not influence cardiometabolic outcomes to the extent expected given its association with l-ascorbic acid. American Journal of Clinical Nutrition, 2015, 101, 202-209.	2.2	13
40	FUT2 secretor genotype and susceptibility to infections and chronic conditions in the ALSPAC cohort. Wellcome Open Research, 2018, 3, 65.	0.9	12
41	Estimating the causal effect of BMI on mortality risk in people with heart disease, diabetes and cancer using Mendelian randomization. International Journal of Cardiology, 2021, 330, 214-220.	0.8	9
42	Enhanced Protection Against Diarrhea Among Breastfed Infants of Nonsecretor Mothers. Pediatric Infectious Disease Journal, 2021, 40, 260-263.	1.1	9
43	Blood pressure and mortality: using offspring blood pressure as an instrument for own blood pressure in the HUNT study. Scientific Reports, 2015, 5, 12399.	1.6	8
44	Commentary: Mendelian randomization analysis identifies circulating vitamin D as a causal risk factor for ovarian cancer. International Journal of Epidemiology, 2016, 45, 1631-1633.	0.9	7
45	Applying Mendelian randomization to appraise causality in relationships between nutrition and cancer. Cancer Causes and Control, 2022, 33, 631-652.	0.8	7
46	Mendelian randomization analysis of the causal impact of body mass index and waist-hip ratio on rates of hospital admission. Economics and Human Biology, 2022, 44, 101088.	0.7	6
47	Body muscle gain and markers of cardiovascular disease susceptibility in young adulthood: A cohort study. PLoS Medicine, 2021, 18, e1003751.	3.9	5
48	A multivariant recallâ€byâ€genotype study of the metabolomic signature of BMI. Obesity, 2022, 30, 1298-1310.	1.5	5
49	The Association of Early Childhood Cognitive Development and Behavioural Difficulties with Pre-Adolescent Problematic Eating Attitudes. PLoS ONE, 2014, 9, e104132.	1.1	3
50	Common variation at 16p11.2 is associated with glycosuria in pregnancy: findings from a genome-wide association study in European women. Human Molecular Genetics, 2020, 29, 2098-2106.	1.4	3
51	Sensitivity to missing not at random dropout in clinical trials: Use and interpretation of the trimmed means estimator. Statistics in Medicine, 2022, 41, 1462-1481.	0.8	3
52	Adiposity and Cardiometabolic Outcomes. JAMA Network Open, 2018, 1, e183778.	2.8	2
53	The â€~ALSPAC in London' dataset: adiposity, cardiometabolic risk profiles, and the emerging arterial phenotype in young adulthood. Wellcome Open Research, 0, 3, 162.	0.9	2
54	Piloting the objective measurement of eating behaviour at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children. Wellcome Open Research, 2020, 5, 185.	0.9	1