Zhuangchun Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8790192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial Cathode-Electrolyte Interphases on Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O _{2by Carbon Nanotubes Modified LiF for Enhanced Cycleability. Electrochemistry, 2021, 89, 296-302.}	kgt;4	5
2	A dual-electrolyte aluminum/air microfluidic cell with enhanced voltage, power density and electrolyte utilization via a novel composite membrane. Journal of Power Sources, 2020, 478, 228960.	7.8	10
3	Adhesive Hybrid SiO2.01C0.23Hx Nanoparticulate Coating on Polyethylene (PE) Separator by Roll-to-Roll Atmospheric Pressure Plasma. Coatings, 2019, 9, 190.	2.6	5
4	Binderâ€Free Nanoparticulate Coating of a Polyethylene Separator via a Reactive Atmospheric Pressure Plasma for Lithiumâ€Ion Batteries with Improved Performances. Advanced Materials Interfaces, 2018, 5, 1800579.	3.7	28
5	Observations of stress accumulation and relaxation in solidâ€state lithiation and delithiation of suspended Si microcantilevers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2156-2168.	1.8	7
6	Enhanced oxygen reduction activity on surface-decorated perovskite La 0.6 Ni 0.4 FeO 3 cathode for solid oxide fuel cells. Electrochimica Acta, 2015, 163, 204-212.	5.2	34
7	Improved Electrochemical Performance of Carbon-Coated LiFeBO3 Nanoparticles for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2015, 15, 7186-7190.	0.9	4
8	Effect of Al ₂ O ₃ Coating on Stabilizing LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ Cathodes. Chemistry of Materials, 2015, 27, 6146-6154.	6.7	185
9	Ultralow thermal conductivity and thermoelectric properties of carbon nanotubes doped Ca3Co4O9+δ. Ceramics International, 2015, 41, 961-965.	4.8	29
10	A high-capacity dual-electrolyte aluminum/air electrochemical cell. RSC Advances, 2014, 4, 30857-30863.	3.6	44
11	Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1â^'2yO2. Journal of Power Sources, 2014, 268, 106-112.	7.8	41
12	Origin of Bonding between the SWCNT and the Fe ₃ O ₄ (001) Surface and the Enhanced Electrical Conductivity. Journal of Physical Chemistry Letters, 2011, 2, 2853-2858.	4.6	17
13	Extremely Durable Highâ€Rate Capability of a LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ Cathode Enabled with Singleâ€Walled Carbon Nanotubes. Advanced Energy Materials, 2011, 1, 58-62.	19.5	74
14	Carbon nanotube modified air-cathodes for electricity production in microbial fuel cells. Journal of Power Sources, 2011, 196, 7465-7469.	7.8	102
15	Nanostructured Fe ₃ O ₄ /SWNT Electrode: Binderâ€Free and Highâ€Rate Liâ€Ion Anode. Advanced Materials, 2010, 22, E145-9.	21.0	556
16	High-Capacity and High-Rate Anodes for Li-Ion Batteries. ECS Meeting Abstracts, 2010, , .	0.0	0
17	Electronic properties of metal-semiconductor and metal-oxide-semiconductor structures composed of carbon nanotube film on silicon. Applied Physics Letters, 2010, 97, 233105.	3.3	12
18	Electronic Junction Control in a Nanotube-Semiconductor Schottky Junction Solar Cell. Nano Letters, 2010, 10, 5001-5005.	9.1	135

Zhuangchun Wu

#	Article	IF	CITATIONS
19	Dual <i>n-</i> and <i>p-</i> Type Dopable Electrochromic Devices Employing Transparent Carbon Nanotube Electrodes. Chemistry of Materials, 2009, 21, 5539-5547.	6.7	48
20	Carbonâ€Nanotubeâ€Enabled Vertical Field Effect and Lightâ€Emitting Transistors. Advanced Materials, 2008, 20, 3605-3609.	21.0	107
21	Metal-semiconductor-metal (MSM) photodetectors based on single-walled carbon nanotube film-silicon Schottky contacts. Proceedings of SPIE, 2008, , .	0.8	Ο
22	Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film–GaAs Schottky contacts. Journal of Applied Physics, 2008, 103, 114315.	2.5	37
23	Nanolithographic patterning of transparent, conductive single-walled carbon nanotube films by inductively coupled plasma reactive ion etching. Journal of Vacuum Science & Technology B, 2007, 25, 348.	1.3	47
24	Metal-Semiconductor-Metal (MSM) Photodetectors Based on Single-walled Carbon Nanotube Film-GaAs Schottky Contacts. Materials Research Society Symposia Proceedings, 2007, 1057, 1.	0.1	0
25	Geometry Dependent Resistivity in Single-walled Carbon Nanotube Films Patterned Down to Submicron Dimensions. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	Ο
26	Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions. Applied Physics Letters, 2006, 89, 093107.	3.3	53
27	Carbon nanotube films for room temperature hydrogen sensing. Nanotechnology, 2005, 16, 2218-2221.	2.6	143
28	Transparent, Conductive Carbon Nanotube Films. Science, 2004, 305, 1273-1276.	12.6	2,797
29	Single Wall Carbon Nanotubes for p-Type Ohmic Contacts to GaN Light-Emitting Diodes. Nano Letters, 2004, 4, 911-914.	9.1	100
30	Metallic/Semiconducting Nanotube Separation and Ultra-thin, Transparent Nanotube Films. AIP Conference Proceedings, 2004, , .	0.4	5
31	Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2003, 77, 561-565.	2.3	171
32	Low-field magnetoresistance in nanosized La0.7Sr0.3MnO3/Pr0.5Sr0.5MnO3 composites. Applied Physics Letters, 2001, 78, 1110-1112.	3.3	72
33	In situ electrical-field-induced growth and properties of Bi3TiNbO9 ferroelectric thin films. Applied Physics Letters, 2001, 79, 4559-4561.	3.3	13
34	Q-dependence of dynamic hysteresis in Potts spin lattice: Monte-Carlo simulation. Solid State Communications, 2000, 115, 383-388.	1.9	1
35	Characteristics of SrBi2Ta2O9 thin films prepared by pulsed laser deposition for non-volatile memory applications. Thin Solid Films, 2000, 375, 200-204.	1.8	7
36	Four regions of the propagation of the plume formed in pulsed laser deposition by optical-wavelength-sensitive CCD photography. Thin Solid Films, 2000, 375, 233-237.	1.8	8

Zhuangchun Wu

#	Article	IF	CITATIONS
37	Effect of oxygen nonstoichiometry on electrotransport and low-field magnetotransport property of polycrystallineLa0.5Sr0.5MnO3â ´Î thin films. Physical Review B, 2000, 62, 8976-8982.	3.2	27
38	Partially crystallized La0.5Sr0.5MnO3 thin films by laser ablation and their enhanced low-field magnetoresistance. Applied Physics Letters, 2000, 76, 2286-2288.	3.3	39
39	Completely ã€^111〉-textured growth and enhanced ferroelectric properties of Pb(Ta0.05Zr0.48Ti0.47)O3 films on Pt/TiO2/SiO2/Si(001) using SrRuO3 buffer layer. Applied Physics Letters, 1999, 75, 3396-3398.	3.3	10
40	Pulsed laser deposition of (001) textured LiNbO3 films on Al2O3/SiO2/Si substrate. Applied Surface Science, 1999, 141, 197-200.	6.1	24
41	Pulsed-laser deposition of Ta-doped PZT ferroelectric films for memory applications using conductive oxide La 0.25 Sr 0.75 CoO 3 and SrRuO 3 electrodes. Applied Physics A: Materials Science and Processing, 1999, 69, S659-S661.	2.3	10
42	A study of dynamics and chemical reactions in laser-ablated PbTiO 3 plume by optical-wavelength-sensitive CCD photography. Applied Physics A: Materials Science and Processing, 1998, 67, 331-334.	2.3	4
43	Effects of substrate temperature on the growth of oriented LiNbO3 thin films by pulsed laser deposition. Materials Letters, 1998, 34, 332-335.	2.6	11
44	Pulsed laser deposition of films on fused silica in waveguide form. Journal Physics D: Applied Physics, 1998, 31, 3185-3187.	2.8	17
45	Formation of the patterned nanocrystalline Si by pulsed-laser interference crystallization of a-Si:H thin films. , 1998, , .		1
46	Comparative study of laser ablation techniques for fabricating nanocrystalline SnO2 thin films for sensors. Materials Letters, 1996, 28, 369-372.	2.6	25
47	Excimer laser ablating preparation of Ba2NaNb5O15 optical waveguiding films on (001) KTiOP04 substrates. Solid State Communications, 1995, 93, 479-482.	1.9	7
48	Preparation of optical Ba2NaNb5O15waveguide films by pulsed laser deposition. Journal Physics D: Applied Physics, 1995, 28, 216-219.	2.8	3
49	A Monte Carlo approach of phase separation in binary alloys with mobile vacancies. Materials Letters, 1995, 22, 23-27.	2.6	6
50	Epitaxial growth of optical waveguiding LiTaO3films by excimer laser ablation. Journal of Physics Condensed Matter, 1994, 6, 5409-5414.	1.8	18
51	Epitaxial growth of optical Ba2NaNb5O15waveguide film by pulsed laser deposition. Applied Physics Letters, 1994, 65, 1995-1997.	3.3	16
52	Pulsed laser deposition of PZT/LSCO heterostructure for integrated ferroelectric devices. Solid State Communications, 1994, 91, 671-673.	1.9	15
53	Growth of LiNbO3 optical waveguide films by excimer laser ablation. Materials Letters, 1994, 20, 35-38.	2.6	17