Ming Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8790139/publications.pdf

Version: 2024-02-01

37 papers	5,318 citations	24 h-index	35 g-index
37	37	37	13802
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inhibition of autophagy aggravated 4-nitrophenol-induced oxidative stress and apoptosis in NHPrE1 human normal prostate epithelial progenitor cells. Regulatory Toxicology and Pharmacology, 2017, 87, 88-94.	1.3	15
2	Advances in prostate cancer research models: From transgenic mice to tumor xenografting models. Asian Journal of Urology, 2016, 3, 64-74.	0.5	25
3	Androgen receptor differentially regulates the proliferation of prostatic epithelial cells <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 70404-70419.	0.8	10
4	Functions of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Gynecologic Disorders. Clinical Medicine Insights: Oncology, 2015, 9, CMO.S23527.	0.6	6
5	Evaluation of public cancer datasets and signatures identifies TP53 mutant signatures with robust prognostic and predictive value. BMC Cancer, 2015, 15, 179.	1.1	15
6	TR4 nuclear receptor enhances prostate cancer initiation via altering the stem cell population and EMT signals in the PPARG-deleted prostate cells. Oncoscience, 2015, 2, 142-150.	0.9	12
7	Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology. Asian Journal of Andrology, 2015, 17, 942.	0.8	36
8	ALCAM/CD166 Is a TGF-β–Responsive Marker and Functional Regulator of Prostate Cancer Metastasis to Bone. Cancer Research, 2014, 74, 1404-1415.	0.4	69
9	Deficiency in Metabolic Regulators PPARγ and PTEN Cooperates to Drive Keratinizing Squamous Metaplasia in Novel Models of Human Tissue Regeneration. American Journal of Pathology, 2013, 182, 449-459.	1.9	22
10	SPARCL1 suppresses metastasis in prostate cancer. Molecular Oncology, 2013, 7, 1019-1030.	2.1	32
11	Cathepsin D acts as an essential mediator to promote malignancy of benign prostatic epithelium. Prostate, 2013, 73, 476-488.	1.2	29
12	Glandular Stem Cells (GSCs): Stem Cells in Glandular Organs. , 2013, , 223-233.		0
13	Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. Journal of Endocrinology, 2012, 213, 173-182.	1.2	39
14	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
15	The Stress Response Mediator ATF3 Represses Androgen Signaling by Binding the Androgen Receptor. Molecular and Cellular Biology, 2012, 32, 3190-3202.	1.1	38
16		1.1	38
	Molecular and Cellular Biology, 2012, 32, 3190-3202. PPARÎ ³ : A molecular link between systemic metabolic disease and benign prostate hyperplasia.		

#	Article	IF	Citations
19	Functional Remodeling of Benign Human Prostatic Tissues <i>In Vivo</i> by Spontaneously Immortalized Progenitor and Intermediate Cells. Stem Cells, 2010, 28, 344-356.	1.4	68
20	Autophagy in nuclear receptor PPAR \hat{I}^3 -deficient mouse prostatic carcinogenesis. Autophagy, 2010, 6, 175-176.	4.3	20
21	Spontaneous immortalization of human dermal microvascular endothelial cells. World Journal of Stem Cells, 2010, 2, 114.	1.3	8
22	Activation of $\hat{I}^2 \hat{a} \in \mathbb{C}$ atenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate, 2009, 69, 249-262.	1.2	92
23	Methodologies in Assaying Prostate Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 85-138.	0.4	34
24	Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. Aging, 2009, $1,316-327$.	1.4	50
25	JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle, 2008, 7, 3091-3097.	1.3	114
26	Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2521-2526.	3.3	86
27	Critical and Distinct Roles of p16 and Telomerase in Regulating the Proliferative Life Span of Normal Human Prostate Epithelial Progenitor Cells. Journal of Biological Chemistry, 2008, 283, 27957-27972.	1.6	32
28	Tissue-Specific Consequences of Cyclin D1 Overexpression in Prostate Cancer Progression. Cancer Research, 2007, 67, 8188-8197.	0.4	59
29	Selective Silencing of Viral Gene E6 and E7 Expression in HPV-Positive Human Cervical Carcinoma Cells Using Small Interfering RNAs., 2005, 292, 401-420.		21
30	Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development (Cambridge), 2005, 132, 3431-3443.	1.2	157
31	Cancer-Specific Functions of SIRT1 Enable Human Epithelial Cancer Cell Growth and Survival. Cancer Research, 2005, 65, 10457-10463.	0.4	297
32	A bi-functional siRNA construct induces RNA interference and also primes PCR amplification for its own quantification. Nucleic Acids Research, 2005, 33, e151-e151.	6.5	18
33	Gel-Based Application of siRNA to Human Epithelial Cancer Cells Induces RNAi-Dependent Apoptosis. Oligonucleotides, 2004, 14, 239-248.	2.7	42
34	Approaches to understanding the importance and clinical implications of peroxisome proliferator-activated receptor gamma (PPAR?) signaling in prostate cancer. Journal of Cellular Biochemistry, 2004, 91, 513-527.	1.2	27
35	Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes and Development, 2003, 17, 832-837.	2.7	131
36	Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene, 2002, 21, 6041-6048.	2.6	347

#	Article	IF	CITATIONS
37	p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene, 2001, 20, 5449-5458.	2.6	45