Thomas C Sdhof

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8790114/thomas-c-sudhof-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

151	24,823 citations	74	157
papers		h-index	g-index
167	29,303	17.4	7.7
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
151	Treatment of a genetic brain disease by CNS-wide microglia replacement <i>Science Translational Medicine</i> , 2022 , 14, eabl9945	17.5	1
150	Proteolytic regulation of calcium channels - avoiding controversy Faculty Reviews, 2022, 11, 5	1.2	
149	Engineered synaptic tools reveal localized cAMP signaling in synapse assembly <i>Journal of Cell Biology</i> , 2022 , 221,	7.3	2
148	Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands <i>Nature Communications</i> , 2022 , 13, 2297	17.4	2
147	Transsynaptic cerebellin 4-neogenin 1 signaling mediates LTP in the mouse dentate gyrus Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e212342111	9 ^{11.5}	1
146	Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice <i>Molecular Autism</i> , 2022 , 13, 19	6.5	0
145	Molecular self-avoidance in synaptic neurexin complexes <i>Science Advances</i> , 2021 , 7, eabk1924	14.3	2
144	RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. <i>Cell</i> , 2021 , 184, 5869-5885.e25	56.2	7
143	Latrophilin GPCR signaling mediates synapse formation. <i>ELife</i> , 2021 , 10,	8.9	13
142	The Perils of Navigating Activity-Dependent Alternative Splicing of Neurexins. <i>Frontiers in Molecular Neuroscience</i> , 2021 , 14, 659681	6.1	2
141	Neurexins regulate presynaptic GABA-receptors at central synapses. <i>Nature Communications</i> , 2021 , 12, 2380	17.4	5
140	Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. <i>Molecular Psychiatry</i> , 2021 ,	15.1	3
139	Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived -mutant neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7
138	GluD1 is a signal transduction device disguised as an ionotropic receptor. <i>Nature</i> , 2021 , 595, 261-265	50.4	12
137	Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. <i>Molecular Psychiatry</i> , 2021 ,	15.1	5
136	The cell biology of synapse formation. <i>Journal of Cell Biology</i> , 2021 , 220,	7.3	16
135	A simple Ca-imaging approach to neural network analyses in cultured neurons. <i>Journal of Neuroscience Methods</i> , 2021 , 349, 109041	3	3

(2019-2021)

134	Multiple signaling pathways are essential for synapse formation induced by synaptic adhesion molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7
133	A Synaptic Circuit Required for Acquisition but Not Recall of Social Transmission of Food Preference. <i>Neuron</i> , 2020 , 107, 144-157.e4	13.9	18
132	Neurexins cluster Ca channels within the presynaptic active zone. <i>EMBO Journal</i> , 2020 , 39, e103208	13	25
131	Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. <i>Nature Communications</i> , 2020 , 11, 2140	17.4	12
130	Dysfunction of parvalbumin neurons in the cerebellar nuclei produces an action tremor. <i>Journal of Clinical Investigation</i> , 2020 , 130, 5142-5156	15.9	5
129	LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. <i>ELife</i> , 2020 , 9,	8.9	20
128	Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. <i>ELife</i> , 2020 , 9,	8.9	11
127	Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. <i>Journal of Cell Biology</i> , 2020 , 219,	7.3	11
126	SPARCL1 Promotes Excitatory But Not Inhibitory Synapse Formation and Function Independent of Neurexins and Neuroligins. <i>Journal of Neuroscience</i> , 2020 , 40, 8088-8102	6.6	15
125	Persistent transcriptional programmes are associated with remote memory. <i>Nature</i> , 2020 , 587, 437-44.	2 50.4	15
125	Persistent transcriptional programmes are associated with remote memory. <i>Nature</i> , 2020 , 587, 437-44. Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. <i>Cell</i> , 2019 , 179, 498-513.e22	2 50.4 56.2	15 28
	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. <i>Cell</i> , 2019 ,	·	
124	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. <i>Cell</i> , 2019 , 179, 498-513.e22 Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of	56.2	28
124	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. <i>Cell</i> , 2019 , 179, 498-513.e22 Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. <i>Cell Stem Cell</i> , 2019 , 25, 103-119.e6 Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. <i>Proceedings of the National Academy of Sciences of the United States of</i>	56.2	28
124 123 122	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. <i>Cell</i> , 2019 , 179, 498-513.e22 Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. <i>Cell Stem Cell</i> , 2019 , 25, 103-119.e6 Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12524-12533 Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA	56.2 18	28 20 43
124 123 122	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. <i>Cell</i> , 2019 , 179, 498-513.e22 Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. <i>Cell Stem Cell</i> , 2019 , 25, 103-119.e6 Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12524-12533 Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA Receptor Responses. <i>Neuron</i> , 2019 , 102, 993-1008.e5 Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and	56.2 18 11.5	28 20 43 53
124 123 122 121	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. <i>Cell</i> , 2019 , 179, 498-513.e22 Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. <i>Cell Stem Cell</i> , 2019 , 25, 103-119.e6 Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12524-12533 Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA Receptor Responses. <i>Neuron</i> , 2019 , 102, 993-1008.e5 Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. <i>Genes and Development</i> , 2019 , 33, 365-376 Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways. <i>Neuron</i> ,	56.2 18 11.5 13.9	28 20 43 53 20

116	Neuroligin-4 Regulates Excitatory Synaptic Transmission in Human Neurons. <i>Neuron</i> , 2019 , 103, 617-626	i æ 69	36
115	Structures of neurexophilin-neurexin complexes reveal a regulatory mechanism of alternative splicing. <i>EMBO Journal</i> , 2019 , 38, e101603	13	7
114	A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. <i>ELife</i> , 2019 , 8,	8.9	25
113	Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7113-7122	11.5	25
112	Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. <i>Science</i> , 2019 , 363,	33.3	92
111	Genetic Ablation of All Cerebellins Reveals Synapse Organizer Functions in Multiple Regions Throughout the Brain. <i>Journal of Neuroscience</i> , 2018 , 38, 4774-4790	6.6	31
110	Structural Basis for Teneurin Function in Circuit-Wiring: A Toxin Motif at the Synapse. <i>Cell</i> , 2018 , 173, 735-748.e15	56.2	73
109	Autism-associated neuroligin-4 mutation selectively impairs glycinergic synaptic transmission in mouse brainstem synapses. <i>Journal of Experimental Medicine</i> , 2018 , 215, 1543-1553	16.6	16
108	The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	42
107	Cbln2 and Cbln4 are expressed in distinct medial habenula-interpeduncular projections and contribute to different behavioral outputs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E10235-E10244	11.5	13
106	Retinoic Acid Receptor RAREDependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex. <i>Journal of Neuroscience</i> , 2018 , 38, 10454-10	6.6 9466	19
105	Towards an Understanding of Synapse Formation. <i>Neuron</i> , 2018 , 100, 276-293	13.9	236
104	A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory. <i>Nature Neuroscience</i> , 2018 , 21, 1515-1519	25.5	33
103	RIM-binding proteins recruit BK-channels to presynaptic release sites adjacent to voltage-gated Ca-channels. <i>EMBO Journal</i> , 2018 , 37,	13	11
102	ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and A\(\text{\Partial Secretion}\). <i>Cell</i> , 2017 , 168, 427-441.e21	56.2	254
101	Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1253-E1262	11.5	46
100	Generation of pure GABAergic neurons by transcription factor programming. <i>Nature Methods</i> , 2017 , 14, 621-628	21.6	179
99	Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins. <i>Neuron</i> , 2017 , 94, 611-625.e4	13.9	101

(2015-2017)

98	Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties. <i>Journal of Neuroscience</i> , 2017 , 37, 6816-6836	6.6	46
97	Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. <i>Nature</i> , 2017 , 544, 245-249	50.4	112
96	Presynaptic Neuronal Pentraxin Receptor Organizes Excitatory and Inhibitory Synapses. <i>Journal of Neuroscience</i> , 2017 , 37, 1062-1080	6.6	63
95	Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. <i>Cell</i> , 2017 , 171, 745-769	₹6.2	339
94	Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly. <i>Journal of Cell Biology</i> , 2017 , 216, 3831-3846	7.3	52
93	Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. Journal of Comparative Neurology, 2017, 525, 3286-3311	3.4	31
92	IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning. <i>Neuron</i> , 2017 , 95, 106-122.e5	13.9	32
91	Neuroligins Are Selectively Essential for NMDAR Signaling in Cerebellar Stellate Interneurons. Journal of Neuroscience, 2016 , 36, 9070-83	6.6	27
90	Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E522	22: 51	111
89	How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs. <i>Neuron</i> , 2016 , 91, 792-807	13.9	85
88	The conditional KO approach: Cre/Lox technology in human neurons. <i>Rare Diseases (Austin, Tex)</i> , 2016 , 4, e1131884		9
87	□Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling. <i>Cell</i> , 2015 , 162, 593-606	56.2	88
86	Structural Basis of Latrophilin-FLRT-UNC5 Interaction in Cell Adhesion. <i>Structure</i> , 2015 , 23, 1678-1691	5.2	74
85	Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms. <i>Neuron</i> , 2015 , 87, 326-40	13.9	101
84	Definition of a molecular pathway mediating Esynuclein neurotoxicity. <i>Journal of Neuroscience</i> , 2015 , 35, 5221-32	6.6	128
83	Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms. <i>Neuron</i> , 2015 , 86, 442-56	13.9	52
82	RIM-BPs Mediate Tight Coupling of Action Potentials to Ca(2+)-Triggered Neurotransmitter Release. <i>Neuron</i> , 2015 , 87, 1234-1247	13.9	66
81	Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. <i>Cell Stem Cell</i> , 2015 , 17, 316-28	18	136

80	Neuroligins Sculpt Cerebellar Purkinje-Cell Circuits by Differential Control of Distinct Classes of Synapses. <i>Neuron</i> , 2015 , 87, 781-96	13.9	85
79	Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. <i>Nature Neuroscience</i> , 2015 , 18, 997-1007	25.5	68
78	Analysis of conditional heterozygous STXBP1 mutations in human neurons. <i>Journal of Clinical Investigation</i> , 2015 , 125, 3560-71	15.9	50
77	Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E1291-9	11.5	198
76	Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. <i>Cell</i> , 2014 , 158, 198-212	56.2	279
75	Generation of induced neuronal cells by the single reprogramming factor ASCL1. <i>Stem Cell Reports</i> , 2014 , 3, 282-96	8	239
74	Calsyntenins function as synaptogenic adhesion molecules in concert with neurexins. <i>Cell Reports</i> , 2014 , 6, 1096-1109	10.6	58
73	Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. <i>Journal of Biological Chemistry</i> , 2014 , 289, 387-402	5.4	122
72	Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. <i>Neuron</i> , 2013 , 80, 675-90	13.9	690
71	Membrane-tethered monomeric neurexin LNS-domain triggers synapse formation. <i>Journal of Neuroscience</i> , 2013 , 33, 14617-28	6.6	63
70	A neural circuit for memory specificity and generalization. <i>Science</i> , 2013 , 339, 1290-5	33.3	441
69	Rapid single-step induction of functional neurons from human pluripotent stem cells. <i>Neuron</i> , 2013 , 78, 785-98	13.9	737
68	Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. <i>Cell</i> , 2013 , 154, 75-88	56.2	197
67	Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 16622-7	11.5	55
66	High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. <i>Journal of Biological Chemistry</i> , 2012 , 287, 9399-413	5.4	117
65	Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission. <i>Neuron</i> , 2012 , 73, 990-1001	13.9	135
64	The presynaptic active zone. <i>Neuron</i> , 2012 , 75, 11-25	13.9	631
63	Synaptic cell adhesion. <i>Cold Spring Harbor Perspectives in Biology</i> , 2012 , 4, a005694	10.2	166

(2007-2012)

62	A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. <i>EMBO Journal</i> , 2012 , 31, 1364-78	13	243
61	RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. <i>Cell</i> , 2011 , 144, 282-95	56.2	399
60	RIM determines Call+ channel density and vesicle docking at the presynaptic active zone. <i>Neuron</i> , 2011 , 69, 304-16	13.9	271
59	Induction of human neuronal cells by defined transcription factors. <i>Nature</i> , 2011 , 476, 220-3	50.4	924
58	The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 2534-9	11.5	107
57	Direct conversion of fibroblasts to functional neurons by defined factors. <i>Nature</i> , 2010 , 463, 1035-41	50.4	2232
56	Neurexins physically and functionally interact with GABA(A) receptors. <i>Neuron</i> , 2010 , 66, 403-16	13.9	121
55	Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 17998-8003	11.5	336
54	Alpha-latrotoxin stimulates a novel pathway of Ca2+-dependent synaptic exocytosis independent of the classical synaptic fusion machinery. <i>Journal of Neuroscience</i> , 2009 , 29, 8639-48	6.6	45
53	Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation. <i>EMBO Journal</i> , 2009 , 28, 3244-55	13	99
52	Presenilins are essential for regulating neurotransmitter release. <i>Nature</i> , 2009 , 460, 632-6	50.4	219
51	ELKS2alpha/CAST deletion selectively increases neurotransmitter release at inhibitory synapses. <i>Neuron</i> , 2009 , 64, 227-39	13.9	78
50	Neuroligins and neurexins link synaptic function to cognitive disease. <i>Nature</i> , 2008 , 455, 903-11	50.4	1278
49	RIM1alpha and RIM1beta are synthesized from distinct promoters of the RIM1 gene to mediate differential but overlapping synaptic functions. <i>Journal of Neuroscience</i> , 2008 , 28, 13435-47	6.6	73
48	Unusually rapid evolution of Neuroligin-4 in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 6421-6	11.5	73
47	Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. <i>Journal of Comparative Neurology</i> , 2007 , 502, 261-74	3.4	79
46	Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. Journal of Neuroscience Methods, 2007 , 161, 75-87	3	108
45	A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. <i>Nature</i> , 2007 , 450, 676-82	50.4	267

44	A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. <i>Science</i> , 2007 , 318, 71-6	33.3	778
43	Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. <i>Neuron</i> , 2007 , 54, 801-12	13.9	216
42	Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. <i>Neuron</i> , 2007 , 54, 919-31	13.9	436
41	Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2+ interactions. <i>Neuron</i> , 2007 , 56, 992-1003	13.9	157
40	Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. <i>Journal of Neuroscience</i> , 2006 , 26, 632-43	6.6	96
39	Crystal structure of the second LNS/LG domain from neurexin 1alpha: Ca2+ binding and the effects of alternative splicing. <i>Journal of Biological Chemistry</i> , 2006 , 281, 22896-905	5.4	41
38	Gene selection, alternative splicing, and post-translational processing regulate neuroligin selectivity for beta-neurexins. <i>Biochemistry</i> , 2006 , 45, 12816-27	3.2	113
37	Neuroligins determine synapse maturation and function. <i>Neuron</i> , 2006 , 51, 741-54	13.9	604
36	Extracellular domains of alpha-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2+ channels. <i>Journal of Neuroscience</i> , 2005 , 25, 4330-42	6.6	126
35	CAPS in search of a lost function. <i>Neuron</i> , 2005 , 46, 2-4	13.9	8
34	A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. <i>Neuron</i> , 2005 , 48, 229-36	13.9	373
33	Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism. <i>Journal of Biological Chemistry</i> , 2005 , 280, 22365-74	5.4	138
32	Structural characterization of recombinant soluble rat neuroligin 1: mapping of secondary structure and glycosylation by mass spectrometry. <i>Biochemistry</i> , 2004 , 43, 1496-506	3.2	37
31	Identification of Endogenous/transfected Synaptic Proteins in Primary Neuronal Culture by a High-yield Immunogold Labeling. <i>Microscopy and Microanalysis</i> , 2003 , 9, 1498-1499	0.5	
30	Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. <i>Nature</i> , 2003 , 423, 939-48	50.4	521
29	Synaptotagmins: why so many?. Journal of Biological Chemistry, 2002, 277, 7629-32	5.4	368
28	Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. <i>Genomics</i> , 2002 , 79, 849-59	4.3	221
27	CASK and protein 4.1 support F-actin nucleation on neurexins. <i>Journal of Biological Chemistry</i> , 2001 , 276, 47869-76	5.4	121

(1995-2001)

26	Vam3p structure reveals conserved and divergent properties of syntaxins. <i>Nature Structural Biology</i> , 2001 , 8, 258-64		120
25	alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. <i>Annual Review of Neuroscience</i> , 2001 , 24, 933-62	17	172
24	The C2B domain of synaptotagmin I is a Ca2+-binding module. <i>Biochemistry</i> , 2001 , 40, 5854-60	3.2	106
23	The G protein-coupled receptor CL1 interacts directly with proteins of the Shank family. <i>Journal of Biological Chemistry</i> , 2000 , 275, 36204-10	5.4	48
22	Structure of the Janus-faced C2B domain of rabphilin. <i>Nature Cell Biology</i> , 1999 , 1, 106-12	23.4	60
21	Neurexins are functional alpha-latrotoxin receptors. <i>Neuron</i> , 1999 , 22, 489-96	13.9	79
20	The making of neurexins. <i>Journal of Neurochemistry</i> , 1998 , 71, 1339-47	6	131
19	Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. <i>Biochemistry</i> , 1998 , 37, 123	39 <u>54</u> 03	3 162
18	Neurexophilin binding to alpha-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. <i>Journal of Biological Chemistry</i> , 1998 , 273, 34716-23	5.4	87
17	alpha-Latrotoxin receptor CIRL/latrophilin 1 (CL1) defines an unusual family of ubiquitous G-protein-linked receptors. G-protein coupling not required for triggering exocytosis. <i>Journal of Biological Chemistry</i> , 1998 , 273, 32715-24	5.4	138
16	Neurexophilins form a conserved family of neuropeptide-like glycoproteins. <i>Journal of Neuroscience</i> , 1998 , 18, 3630-8	6.6	69
15	Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. <i>Journal of Biological Chemistry</i> , 1997 , 272, 26032-9	5.4	180
14	Assignment of the 1H, 15N and 13C resonances of the calcium-free and calcium-bound forms of the first C2-domain of synaptotagmin I. <i>Journal of Biomolecular NMR</i> , 1997 , 10, 307-8	3	11
13	Identification, expression, and crystallization of the protease-resistant conserved domain of synapsin I. <i>Protein Science</i> , 1997 , 6, 2264-7	6.3	6
12	Structure and evolution of neurexophilin. <i>Journal of Neuroscience</i> , 1996 , 16, 4360-9	6.6	80
11	Structures, alternative splicing, and neurexin binding of multiple neuroligins. <i>Journal of Biological Chemistry</i> , 1996 , 271, 2676-82	5.4	346
10	The synaptic vesicle cycle: a cascade of protein-protein interactions. <i>Nature</i> , 1995 , 375, 645-53	50.4	1813
9	Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. <i>Neuron</i> , 1995 , 14, 497-507	13.9	357

8	Neuroligin 1: a splice site-specific ligand for beta-neurexins. <i>Cell</i> , 1995 , 81, 435-43	56.2	584
7	Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. <i>Nature</i> , 1993 , 364, 346-9	50.4	448
6	Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. <i>Nature</i> , 1993 , 365, 163-6	50.4	267
5	Binding of synaptotagmin to the alpha-latrotoxin receptor implicates both in synaptic vesicle exocytosis. <i>Nature</i> , 1991 , 353, 65-8	50.4	237
4	InsP3 receptor turnaround. <i>Nature</i> , 1990 , 344, 495	50.4	13
3	Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. <i>Nature</i> , 1987 , 326, 760-5	50.4	364
2	A simple Ca2+-imaging approach to neural network analysis in cultured neurons		1
1	Compartment-Specific Neurexin Nanodomains Orchestrate Tripartite Synapse Assembly		5