Thomas C Südhof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8790114/publications.pdf Version: 2024-02-01

THOMAS C SÃ1/DHOE

#	Article	IF	CITATIONS
1	Treatment of a genetic brain disease by CNS-wide microglia replacement. Science Translational Medicine, 2022, 14, eabl9945.	12.4	45
2	Proteolytic regulation of calcium channels - avoiding controversy Faculty Reviews, 2022, 11, 5.	3.9	0
3	Engineered synaptic tools reveal localized cAMP signaling in synapse assembly. Journal of Cell Biology, 2022, 221, .	5.2	5
4	Deletion of Calsyntenin-3, an atypical cadherin, suppresses inhibitory synapses but increases excitatory parallel-fiber synapses in cerebellum. ELife, 2022, 11, .	6.0	4
5	Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands. Nature Communications, 2022, 13, 2297.	12.8	17
6	Transsynaptic cerebellin 4–neogenin 1 signaling mediates LTP in the mouse dentate gyrus. Proceedings of the United States of America, 2022, 119, e2123421119.	7.1	6
7	Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice. Molecular Autism, 2022, 13, 19.	4.9	10
8	Induction of synapse formation by de novo neurotransmitter synthesis. Nature Communications, 2022, 13, .	12.8	6
9	Neuroligin-3 confines AMPA receptors into nanoclusters, thereby controlling synaptic strength at the calyx of Held synapses. Science Advances, 2022, 8, .	10.3	17
10	A simple Ca2+-imaging approach to neural network analyses in cultured neurons. Journal of Neuroscience Methods, 2021, 349, 109041.	2.5	21
11	Multiple signaling pathways are essential for synapse formation induced by synaptic adhesion molecules. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	29
12	Latrophilin GPCR signaling mediates synapse formation. ELife, 2021, 10, .	6.0	44
13	The Perils of Navigating Activity-Dependent Alternative Splicing of Neurexins. Frontiers in Molecular Neuroscience, 2021, 14, 659681.	2.9	10
14	Neurexins regulate presynaptic GABAB-receptors at central synapses. Nature Communications, 2021, 12, 2380.	12.8	24
15	Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Molecular Psychiatry, 2021, 26, 6253-6268.	7.9	15
16	Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived <i>NRXN1</i> -mutant neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
17	GluD1 is a signal transduction device disguised as an ionotropic receptor. Nature, 2021, 595, 261-265.	27.8	51
18	Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Molecular Psychiatry, 2021, 26, 7509-7521.	7.9	18

THOMAS C SÃ¹/4DHOF

#	Article	IF	CITATIONS
19	The cell biology of synapse formation. Journal of Cell Biology, 2021, 220, .	5.2	136
20	RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell, 2021, 184, 5869-5885.e25.	28.9	45
21	Molecular self-avoidance in synaptic neurexin complexes. Science Advances, 2021, 7, eabk1924.	10.3	9
22	SPARCL1 Promotes Excitatory But Not Inhibitory Synapse Formation and Function Independent of Neurexins and Neuroligins. Journal of Neuroscience, 2020, 40, 8088-8102.	3.6	33
23	Persistent transcriptional programmes are associated with remote memory. Nature, 2020, 587, 437-442.	27.8	61
24	A Synaptic Circuit Required for Acquisition but Not Recall of Social Transmission of Food Preference. Neuron, 2020, 107, 144-157.e4.	8.1	40
25	Neurexins cluster Ca ²⁺ channels within the presynaptic active zone. EMBO Journal, 2020, 39, e103208.	7.8	58
26	Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nature Communications, 2020, 11, 2140.	12.8	36
27	Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. Journal of Cell Biology, 2020, 219, .	5.2	26
28	Dysfunction of parvalbumin neurons in the cerebellar nuclei produces an action tremor. Journal of Clinical Investigation, 2020, 130, 5142-5156.	8.2	16
29	LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. ELife, 2020, 9, .	6.0	40
30	Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. ELife, 2020, 9, .	6.0	21
31	Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. Journal of Neuroscience, 2019, 39, 7408-7427.	3.6	85
32	Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters. Journal of Cell Biology, 2019, 218, 2677-2698.	5.2	78
33	Neuroligin-4 Regulates Excitatory Synaptic Transmission in Human Neurons. Neuron, 2019, 103, 617-626.e6.	8.1	75
34	Structures of neurexophilin–neurexin complexes reveal a regulatory mechanism of alternative splicing. EMBO Journal, 2019, 38, e101603.	7.8	19
35	Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell, 2019, 179, 498-513.e22.	28.9	59
36	Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. Cell Stem Cell, 2019, 25, 103-119.e6.	11.1	43

THOMAS C SÃ1/4 DHOF

#	Article	IF	CITATIONS
37	Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12524-12533.	7.1	82
38	Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA Receptor Responses. Neuron, 2019, 102, 993-1008.e5.	8.1	99
39	Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes and Development, 2019, 33, 365-376.	5.9	46
40	Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways. Neuron, 2019, 102, 621-635.e3.	8.1	67
41	Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7113-7122.	7.1	40
42	Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science, 2019, 363, .	12.6	169
43	A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. ELife, 2019, 8, .	6.0	39
44	Genetic Ablation of All Cerebellins Reveals Synapse Organizer Functions in Multiple Regions Throughout the Brain. Journal of Neuroscience, 2018, 38, 4774-4790.	3.6	58
45	Structural Basis for Teneurin Function in Circuit-Wiring: A Toxin Motif at the Synapse. Cell, 2018, 173, 735-748.e15.	28.9	119
46	Autism-associated neuroligin-4 mutation selectively impairs glycinergic synaptic transmission in mouse brainstem synapses. Journal of Experimental Medicine, 2018, 215, 1543-1553.	8.5	27
47	Cbln2 and Cbln4 are expressed in distinct medial habenula-interpeduncular projections and contribute to different behavioral outputs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10235-E10244.	7.1	25
48	Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex. Journal of Neuroscience, 2018, 38, 10454-10466.	3.6	36
49	Towards an Understanding of Synapse Formation. Neuron, 2018, 100, 276-293.	8.1	445
50	A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory. Nature Neuroscience, 2018, 21, 1515-1519.	14.8	80
51	<scp>RIM</scp> â€binding proteins recruit BKâ€channels to presynaptic release sites adjacent to voltageâ€gated Ca ²⁺ â€channels. EMBO Journal, 2018, 37, .	7.8	15
52	The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine, 2018, 10, .	12.4	79
53	ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and AÎ ² Secretion. Cell, 2017, 168, 427-441.e21.	28.9	372
54	Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1253-E1262	7.1	81

THOMAS C SüDHOF

#	Article	IF	CITATIONS
55	Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 2017, 14, 621-628.	19.0	265
56	Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins. Neuron, 2017, 94, 611-625.e4.	8.1	170
57	Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties. Journal of Neuroscience, 2017, 37, 6816-6836.	3.6	89
58	Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, 2017, 544, 245-249.	27.8	180
59	Presynaptic Neuronal Pentraxin Receptor Organizes Excitatory and Inhibitory Synapses. Journal of Neuroscience, 2017, 37, 1062-1080.	3.6	102
60	Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. Cell, 2017, 171, 745-769.	28.9	608
61	Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly. Journal of Cell Biology, 2017, 216, 3831-3846.	5.2	86
62	Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. Journal of Comparative Neurology, 2017, 525, 3286-3311.	1.6	48
63	IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning. Neuron, 2017, 95, 106-122.e5.	8.1	48
64	Neuroligins Are Selectively Essential for NMDAR Signaling in Cerebellar Stellate Interneurons. Journal of Neuroscience, 2016, 36, 9070-9083.	3.6	34
65	Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5222-31.	7.1	162
66	How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs. Neuron, 2016, 91, 792-807.	8.1	133
67	The conditional KO approach: Cre/Lox technology in human neurons. Rare Diseases (Austin, Tex), 2016, 4, e1131884.	1.8	10
68	Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nature Neuroscience, 2015, 18, 997-1007.	14.8	109
69	β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling. Cell, 2015, 162, 593-606.	28.9	123
70	Structural Basis of Latrophilin-FLRT-UNC5 Interaction in Cell Adhesion. Structure, 2015, 23, 1678-1691.	3.3	101
71	Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms. Neuron, 2015, 87, 326-340.	8.1	144
72	Definition of a Molecular Pathway Mediating α-Synuclein Neurotoxicity. Journal of Neuroscience, 2015, 35, 5221-5232.	3.6	168

THOMAS C SÃ1/4 DHOF

#	Article	IF	CITATIONS
73	Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms. Neuron, 2015, 86, 442-456.	8.1	72
74	RIM-BPs Mediate Tight Coupling of Action Potentials to Ca 2+ -Triggered Neurotransmitter Release. Neuron, 2015, 87, 1234-1247.	8.1	97
75	Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. Cell Stem Cell, 2015, 17, 316-328.	11.1	187
76	Neuroligins Sculpt Cerebellar Purkinje-Cell Circuits by Differential Control of Distinct Classes of Synapses. Neuron, 2015, 87, 781-796.	8.1	128
77	Analysis of conditional heterozygous STXBP1 mutations in human neurons. Journal of Clinical Investigation, 2015, 125, 3560-3571.	8.2	82
78	Latrophilins Function as Heterophilic Cell-adhesion Molecules by Binding to Teneurins. Journal of Biological Chemistry, 2014, 289, 387-402.	3.4	169
79	Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1291-9.	7.1	280
80	Autism-Associated Neuroligin-3 Mutations Commonly Impair Striatal Circuits to Boost Repetitive Behaviors. Cell, 2014, 158, 198-212.	28.9	397
81	Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1. Stem Cell Reports, 2014, 3, 282-296.	4.8	312
82	Calsyntenins Function as Synaptogenic Adhesion Molecules in Concert with Neurexins. Cell Reports, 2014, 6, 1096-1109.	6.4	71
83	Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle. Neuron, 2013, 80, 675-690.	8.1	952
84	Membrane-Tethered Monomeric Neurexin LNS-Domain Triggers Synapse Formation. Journal of Neuroscience, 2013, 33, 14617-14628.	3.6	80
85	A Neural Circuit for Memory Specificity and Generalization. Science, 2013, 339, 1290-1295.	12.6	585
86	Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron, 2013, 78, 785-798.	8.1	1,209
87	Presynaptic Neurexin-3 Alternative Splicing trans-Synaptically Controls Postsynaptic AMPA Receptor Trafficking. Cell, 2013, 154, 75-88.	28.9	246
88	Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16622-16627.	7.1	61
89	A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO Journal, 2012, 31, 1364-1378.	7.8	355
90	High Affinity Neurexin Binding to Cell Adhesion G-protein-coupled Receptor CIRL1/Latrophilin-1 Produces an Intercellular Adhesion Complex. Journal of Biological Chemistry, 2012, 287, 9399-9413.	3.4	147

Thomas C Südhof

#	Article	IF	CITATIONS
91	Distinct Neuronal Coding Schemes in Memory Revealed by Selective Erasure of Fast Synchronous Synaptic Transmission. Neuron, 2012, 73, 990-1001.	8.1	165
92	The Presynaptic Active Zone. Neuron, 2012, 75, 11-25.	8.1	863
93	Synaptic Cell Adhesion. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005694-a005694.	5.5	198
94	RIM Proteins Tether Ca2+ Channels to Presynaptic Active Zones via a Direct PDZ-Domain Interaction. Cell, 2011, 144, 282-295.	28.9	502
95	RIM Determines Ca2+ Channel Density and Vesicle Docking at the Presynaptic Active Zone. Neuron, 2011, 69, 304-316.	8.1	316
96	Induction of human neuronal cells by defined transcription factors. Nature, 2011, 476, 220-223.	27.8	1,152
97	The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2534-2539.	7.1	148
98	Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 2010, 463, 1035-1041.	27.8	2,739
99	Neurexins Physically and Functionally Interact with GABAA Receptors. Neuron, 2010, 66, 403-416.	8.1	154
100	Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17998-18003.	7.1	404
101	Â-Latrotoxin Stimulates a Novel Pathway of Ca2+-Dependent Synaptic Exocytosis Independent of the Classical Synaptic Fusion Machinery. Journal of Neuroscience, 2009, 29, 8639-8648.	3.6	63
102	Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation. EMBO Journal, 2009, 28, 3244-3255.	7.8	120
103	Presenilins are essential for regulating neurotransmitter release. Nature, 2009, 460, 632-636.	27.8	251
104	ELKS2α/CAST Deletion Selectively Increases Neurotransmitter Release at Inhibitory Synapses. Neuron, 2009, 64, 227-239.	8.1	96
105	Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 2008, 455, 903-911.	27.8	1,577
106	RIM1α and RIM1β Are Synthesized from Distinct Promoters of the <i>RIM1</i> Gene to Mediate Differential But Overlapping Synaptic Functions. Journal of Neuroscience, 2008, 28, 13435-13447.	3.6	84
107	Unusually rapid evolution of Neuroligin-4 in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6421-6426.	7.1	84
108	A Neuroligin-3 Mutation Implicated in Autism Increases Inhibitory Synaptic Transmission in Mice. Science, 2007, 318, 71-76.	12.6	932

Thomas C Südhof

#	Article	IF	CITATIONS
109	Endocannabinoid-Mediated Long-Term Plasticity Requires cAMP/PKA Signaling and RIM1α. Neuron, 2007, 54, 801-812.	8.1	238
110	Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2. Neuron, 2007, 54, 919-931.	8.1	511
111	Structures of Neuroligin-1 and the Neuroligin-1/Neurexin-1β Complex Reveal Specific Protein-Protein and Protein-Ca2+ Interactions. Neuron, 2007, 56, 992-1003.	8.1	178
112	Deletion of α-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. Journal of Comparative Neurology, 2007, 502, 261-274.	1.6	89
113	Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. Journal of Neuroscience Methods, 2007, 161, 75-87.	2.5	121
114	A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature, 2007, 450, 676-682.	27.8	321
115	Gene Selection, Alternative Splicing, and Post-translational Processing Regulate Neuroligin Selectivity for β-Neurexinsâ€. Biochemistry, 2006, 45, 12816-12827.	2.5	117
116	Neuroligins Determine Synapse Maturation and Function. Neuron, 2006, 51, 741-754.	8.1	717
117	Different Effects on Fast Exocytosis Induced by Synaptotagmin 1 and 2 Isoforms and Abundance But Not by Phosphorylation. Journal of Neuroscience, 2006, 26, 632-643.	3.6	108
118	Crystal Structure of the Second LNS/LG Domain from Neurexin 1α. Journal of Biological Chemistry, 2006, 281, 22896-22905.	3.4	46
119	Dissection of Synapse Induction by Neuroligins. Journal of Biological Chemistry, 2005, 280, 22365-22374.	3.4	169
120	Extracellular Domains of Â-Neurexins Participate in Regulating Synaptic Transmission by Selectively Affecting N- and P/Q-Type Ca2+ Channels. Journal of Neuroscience, 2005, 25, 4330-4342.	3.6	136
121	CAPS in Search of a Lost Function. Neuron, 2005, 46, 2-4.	8.1	8
122	A Splice Code for trans-Synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to α- and β-Neurexins. Neuron, 2005, 48, 229-236.	8.1	416
123	Structural Characterization of Recombinant Soluble Rat Neuroligin 1:  Mapping of Secondary Structure and Glycosylation by Mass Spectrometry. Biochemistry, 2004, 43, 1496-1506.	2.5	41
124	α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature, 2003, 423, 939-948.	27.8	627
125	Identification of Endogenous/transfected Synaptic Proteins in Primary Neuronal Culture by a High-yield Immunogold Labeling. Microscopy and Microanalysis, 2003, 9, 1498-1499.	0.4	0
126	Synaptotagmins: Why So Many?. Journal of Biological Chemistry, 2002, 277, 7629-7632.	3.4	425

THOMAS C SÃ¹/4DHOF

#	Article	IF	CITATIONS
127	Structure and Evolution of Neurexin Genes: Insight into the Mechanism of Alternative Splicing. Genomics, 2002, 79, 849-859.	2.9	255
128	α-Latrotoxin and Its Receptors: Neurexins and CIRL/Latrophilins. Annual Review of Neuroscience, 2001, 24, 933-962.	10.7	204
129	The C2B Domain of Synaptotagmin I Is a Ca2+-Binding Module. Biochemistry, 2001, 40, 5854-5860.	2.5	125
130	CASK and Protein 4.1 Support F-actin Nucleation on Neurexins. Journal of Biological Chemistry, 2001, 276, 47869-47876.	3.4	150
131	Vam3p structure reveals conserved and divergent properties of syntaxins. Nature Structural Biology, 2001, 8, 258-264.	9.7	140
132	The G Protein-coupled Receptor CL1 Interacts Directly with Proteins of the Shank Family. Journal of Biological Chemistry, 2000, 275, 36204-36210.	3.4	71
133	Structure of the Janus-faced C2B domain of rabphilin. Nature Cell Biology, 1999, 1, 106-112.	10.3	67
134	Neurexins Are Functional α-Latrotoxin Receptors. Neuron, 1999, 22, 489-496.	8.1	89
135	Mechanism of Phospholipid Binding by the C2A-Domain of Synaptotagmin lâ€. Biochemistry, 1998, 37, 12395-12403.	2.5	190
136	Neurexophilin Binding to α-Neurexins. Journal of Biological Chemistry, 1998, 273, 34716-34723.	3.4	103
137	α-Latrotoxin Receptor CIRL/Latrophilin 1 (CL1) Defines an Unusual Family of Ubiquitous G-protein-linked Receptors. Journal of Biological Chemistry, 1998, 273, 32715-32724.	3.4	159
138	Neurexophilins Form a Conserved Family of Neuropeptide-Like Glycoproteins. Journal of Neuroscience, 1998, 18, 3630-3638.	3.6	85
139	The Making of Neurexins. Journal of Neurochemistry, 1998, 71, 1339-1347.	3.9	149
140	Binding Properties of Neuroligin 1 and Neurexin $1^{\hat{l}2}$ Reveal Function as Heterophilic Cell Adhesion Molecules. Journal of Biological Chemistry, 1997, 272, 26032-26039.	3.4	206
141	Assignment of the 1H, 15N and 13C resonances of the calcium-free and calcium-bound forms of the first C2-domain of synaptotagmin I. Journal of Biomolecular NMR, 1997, 10, 307-308.	2.8	12
142	Identification, expression, and crystallization of the proteaseâ€resistant conserved domain of synapsin I. Protein Science, 1997, 6, 2264-2267.	7.6	7
143	Structure and Evolution of Neurexophilin. Journal of Neuroscience, 1996, 16, 4360-4369.	3.6	90
144	Structures, Alternative Splicing, and Neurexin Binding of Multiple Neuroligins. Journal of Biological Chemistry, 1996, 271, 2676-2682.	3.4	398

THOMAS C SÃ1/4 DHOF

#	Article	IF	CITATIONS
145	The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature, 1995, 375, 645-653.	27.8	1,951
146	Cartography of neurexins: More than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron, 1995, 14, 497-507.	8.1	405
147	Neuroligin 1: A splice site-specific ligand for β-neurexins. Cell, 1995, 81, 435-443.	28.9	639
148	Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature, 1993, 364, 346-349.	27.8	489
149	Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature, 1993, 365, 163-166.	27.8	284
150	Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature, 1991, 353, 65-68.	27.8	261
151	InsP3 receptor turnaround. Nature, 1990, 344, 495-495.	27.8	16
152	Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature, 1987, 326, 760-765.	27.8	407