## Nele Moelans

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8789795/publications.pdf

Version: 2024-02-01

236833 149623 56 3,383 96 25 citations h-index g-index papers 101 101 101 2210 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Study of the interfacial reactions controlling the spreading of Al on Ni. Applied Surface Science, 2022, 151272<br>Multi-finase field simulation of Al <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.1</td><td>6</td></mml:math>                      | 3.1 | 6         |
| 2  | display="inline" id="d1e1157" altimg="si16.svg"> <mml:msub><mml:mrow mml:math="" mml:mrow="" mml:msub=""></mml:mrow></mml:msub> <mml:msub><mml:mrow mml:msub=""><mml:mrow mml:msub=""><mml:mrow mml:msub=""></mml:mrow></mml:mrow></mml:mrow></mml:msub> <td>3.6</td> <td>12</td> | 3.6 | 12        |
| 3  | /> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> intermetallic growth at li Phase field simulations of FCC to BCC phase transformation in (Al)CrFeNi medium entropy alloys. Materials Theory, 2022, 6, .                                                                                | 2.2 | 7         |
| 4  | New phase-field model for polycrystalline systems with anisotropic grain boundary properties. Materials and Design, 2022, 217, 110592.                                                                                                                                            | 3.3 | 10        |
| 5  | The effect of voids on boundary migration during recrystallization in additive manufactured samples—a phase field study. Scripta Materialia, 2022, 214, 114675.                                                                                                                   | 2.6 | 2         |
| 6  | Towards more realistic simulations of microstructural evolution in oxidic systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 77, 102402.                                                                                                            | 0.7 | 1         |
| 7  | An efficient and quantitative phase-field model for elastically heterogeneous two-phase solids based on a partial rank-one homogenization scheme. International Journal of Solids and Structures, 2022, 250, 111709.                                                              | 1.3 | 3         |
| 8  | Influence of geometrical alignment of the deformation microstructure on local migration of grain boundaries during recrystallization: A phase-field study. Scripta Materialia, 2021, 191, 116-119.                                                                                | 2.6 | 12        |
| 9  | A phase-field investigation of recrystallization boundary migration into heterogeneous deformation energy fields: Effects of dislocation boundary sharpness. IOP Conference Series: Materials Science and Engineering, 2021, 1121, 012013.                                        | 0.3 | 3         |
| 10 | A grand-potential based phase-field approach for simulating growth of intermetallic phases in multicomponent alloy systems. Acta Materialia, 2021, 206, 116630.                                                                                                                   | 3.8 | 14        |
| 11 | Variant selection of primary–secondary extension twin pairs in magnesium: An analytical calculation study. Acta Materialia, 2021, 219, 117221.                                                                                                                                    | 3.8 | 9         |
| 12 | Effects of dislocation boundary spacings and stored energy on boundary migration during recrystallization: A phase-field analysis. Acta Materialia, 2021, 221, 117377.                                                                                                            | 3.8 | 9         |
| 13 | Effects of LaAlO3 and La2O2S inclusions on the initialization of localized corrosion of pipeline steels in NaCl solution. Scripta Materialia, 2020, 177, 151-156.                                                                                                                 | 2.6 | 38        |
| 14 | Combining multi-phase field simulation with neural network analysis to unravel thermomigration accelerated growth behavior of Cu6Sn5 IMC at cold side Cu–Sn interface. International Journal of Mechanical Sciences, 2020, 184, 105843.                                           | 3.6 | 27        |
| 15 | Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface. Journal of Materials Science and Technology, 2020, 59, 203-219.                                                                    | 5.6 | 25        |
| 16 | Phase field analysis of the growth of fast and slow crystallites. European Physical Journal: Special Topics, 2020, 229, 433-437.                                                                                                                                                  | 1,2 | 5         |
| 17 | Phase-field study of IMC growth in Sn–Cu/Cu solder joints including elastoplastic effects. Acta<br>Materialia, 2020, 188, 241-258.                                                                                                                                                | 3.8 | 27        |
| 18 | Phase field model derivation for rapid crystal growth in polycrystalline alloys. European Physical Journal: Special Topics, 2020, 229, 453-458.                                                                                                                                   | 1.2 | 5         |

| #  | Article                                                                                                                                                                                                                                                                                                                       | IF                                                                 | CITATIONS                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|
| 19 | Combining thermodynamics with tensor completion techniques to enable multicomponent microstructure prediction. Npj Computational Materials, 2020, 6, .                                                                                                                                                                        | 3.5                                                                | 15                                    |
| 20 | Study of the effect of Sn grain boundaries on IMC morphology in solid state inter-diffusion soldering. Scientific Reports, 2019, 9, 14862.                                                                                                                                                                                    | 1.6                                                                | 11                                    |
| 21 | DFT study on the mechanism of inclusion-induced initial pitting corrosion of Al-Ti-Ca complex deoxidized steel with Ce treatment. Physica B: Condensed Matter, 2019, 558, 10-19.                                                                                                                                              | 1.3                                                                | 25                                    |
| 22 | Diffusion multiple study of the Co-Fe-Ni system at 800 °C. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 149-159.                                                                                                                                                                               | 0.7                                                                | 8                                     |
| 23 | xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mrow><mml:mo></mml:mo><mml:mrow><mml:mn>10</mml:mn><mml:mo></mml:mo></mml:mrow><mml:mn>2deformation twins in polycrystalline Mg: A phase field simulation study. Acta Materialia. 2018. 153.</mml:mn></mml:mrow></mml:mrow> | ıl:mrow><<br>nn> <td>mml;mover<br/>:mrow&gt;<mm< td=""></mm<></td> | mml;mover<br>:mrow> <mm< td=""></mm<> |
| 24 | 86-107.<br>Study on Mg–Si–Sr Ternary Alloys for Biomedical Applications. Minerals, Metals and Materials Series, 2018, , 413-424.                                                                                                                                                                                              | 0.3                                                                | 0                                     |
| 25 | Phase-field simulation and analytical modelling of CaSiO3 growth in CaO-Al2O3-SiO2 melts.<br>Computational Materials Science, 2018, 144, 126-132.                                                                                                                                                                             | 1.4                                                                | 7                                     |
| 26 | Analysis of grain topology and volumetric growth rate relation in three-dimensional normal grain growth. Acta Materialia, 2018, 156, 275-286.                                                                                                                                                                                 | 3.8                                                                | 15                                    |
| 27 | Investigation on the existence of a â€~Hillert regime' in normal grain growth. Scripta Materialia, 2018, 142, 148-152.                                                                                                                                                                                                        | 2.6                                                                | 19                                    |
| 28 | Comparison of coarsening behaviour in non-conserved and volume-conserved isotropic two-phase grain structures. Scripta Materialia, 2018, 146, 142-145.                                                                                                                                                                        | 2.6                                                                | 5                                     |
| 29 | Phase-Field Modelling in Extractive Metallurgy. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 417-454.                                                                                                                                                                                                    | 6.8                                                                | 9                                     |
| 30 | Metal Droplet Entrainment by Solid Particles in Slags: An Experimental Approach. Journal of Sustainable Metallurgy, 2018, 4, 15-32.                                                                                                                                                                                           | 1.1                                                                | 9                                     |
| 31 | Metal losses in pyrometallurgical operations - A review. Advances in Colloid and Interface Science, 2018, 255, 47-63.                                                                                                                                                                                                         | 7.0                                                                | 67                                    |
| 32 | Influence of rigid body motion on the attachment of metallic droplets to solid particles in liquid slags $\ddot{\imath}_2 \frac{1}{2}$ A phase field study. Minerals and Metallurgical Processing, 2018, 35, 87-97.                                                                                                           | 0.7                                                                | 0                                     |
| 33 | Diffusion multiple study of Co-Ni-Ti system at 1073 K. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 63, 156-163.                                                                                                                                                                                   | 0.7                                                                | 4                                     |
| 34 | Three-dimensional phase-field study of grain coarsening and grain shape accommodation in the final stage of liquid-phase sintering. Journal of the European Ceramic Society, 2017, 37, 2265-2275.                                                                                                                             | 2.8                                                                | 23                                    |
| 35 | Study of the Effect of Spinel Composition on Metallic Copper Losses in Slags. Journal of Sustainable Metallurgy, 2017, 3, 416-427.                                                                                                                                                                                            | 1.1                                                                | 15                                    |
| 36 | Investigation of Origin of Attached Cu-Ag Droplets to Solid Particles During High-Temperature Slag/Copper/Spinel Interactions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3058-3073.                                                                          | 1.0                                                                | 10                                    |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Three-dimensional phase-field simulation of microstructural evolution in three-phase materials with different interfacial energies and different diffusivities. Journal of Materials Science, 2017, 52, 13852-13867. | 1.7 | 17        |
| 38 | Investigation of Reactive Origin for Attachment of Cu Droplets to Solid Particles. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2459-2468.             | 1.0 | 6         |
| 39 | Microstructure and mechanical characterization of cast Mg-Ca-Si alloys. Journal of Alloys and Compounds, 2017, 694, 767-776.                                                                                         | 2.8 | 11        |
| 40 | Effect of strong nonuniformity in grain boundary energy on 3-D grain growth behavior: A phase-field simulation study. Computational Materials Science, 2017, 127, 67-77.                                             | 1.4 | 44        |
| 41 | Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys. Materials Science and Engineering C, 2017, 71, 25-34.                                                                           | 3.8 | 37        |
| 42 | Investigation of High-Temperature Slag/Copper/Spinel Interactions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3421-3434.                             | 1.0 | 20        |
| 43 | Effect of volume fractions on microstructure evolution in isotropic volume-conserved two-phase alloys: A phase-field study. Computational Materials Science, 2016, 125, 297-308.                                     | 1.4 | 14        |
| 44 | Study of Mn absorption by complex oxide inclusions in Al Ti Mg killed steels. Acta Materialia, 2016, 118, 8-16.                                                                                                      | 3.8 | 54        |
| 45 | Sessile drop evaluation of high temperature copper/spinel and slag/spinel interactions. Transactions of Nonferrous Metals Society of China, 2016, 26, 2770-2783.                                                     | 1.7 | 13        |
| 46 | Investigation of the diffusion behavior in Sn-xAg-yCu/Cu solid state diffusion couples. Journal of Alloys and Compounds, 2016, 686, 794-802.                                                                         | 2.8 | 9         |
| 47 | Phase field simulation study of the attachment of metallic droplets to solid particles in liquid slags based on real slag–spinel micrographs. Computational Materials Science, 2016, 118, 269-278.                   | 1.4 | 5         |
| 48 | Phase field simulation study of the dissolution behavior of Al2O3 into CaO–Al2O3–SiO2 slags. Computational Materials Science, 2016, 119, 9-18.                                                                       | 1.4 | 13        |
| 49 | Investigation of diffusion behavior in Cu–Sn solid state diffusion couples. Journal of Alloys and Compounds, 2016, 661, 282-293.                                                                                     | 2.8 | 51        |
| 50 | Origin and sedimentation of Cu-droplets sticking to spinel solids in pyrometallurgical slags. Materials Science and Technology, 2016, 32, 1911-1924.                                                                 | 0.8 | 30        |
| 51 | Comments on "A numerical method to determine interdiffusion coefficients of Cu6Sn5 and Cu3Sn intermetallic compounds― Intermetallics, 2016, 69, 95-97.                                                               | 1.8 | 6         |
| 52 | Identification and description of intermetallic compounds in Mg–Si–Sr cast and heat-treated alloys.<br>Journal of Alloys and Compounds, 2016, 669, 123-133.                                                          | 2.8 | 8         |
| 53 | Isothermal Crystal Growth Behavior of CaSiO\$lt;inf\$gt;3\$lt;/inf\$gt; in Ternary Oxide Melts. Wuji<br>Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 547.                                                | 0.6 | 2         |
| 54 | Phase field modelling of the attachment of metallic droplets to solid particles in liquid slags: Influence of particle characteristics. Acta Materialia, 2015, 101, 172-180.                                         | 3.8 | 9         |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A phase-field simulation study of irregular grain boundary migration during recrystallization. IOP Conference Series: Materials Science and Engineering, 2015, 89, 012037.                                        | 0.3 | 10        |
| 56 | Microstructure simulation of grain growth in Cu through silicon vias using phase-field modeling. Microelectronics Reliability, 2015, 55, 765-770.                                                                 | 0.9 | 13        |
| 57 | Wetting behaviour of Cu based alloys on spinel substrates in pyrometallurgical context. Materials Science and Technology, 2015, 31, 1925-1933.                                                                    | 0.8 | 18        |
| 58 | A quantitative phase-field model for two-phase elastically inhomogeneous systems. Computational Materials Science, 2015, 99, 81-95.                                                                               | 1.4 | 25        |
| 59 | Phase-field simulations of the interaction between a grain boundary and an evolving second-phase particle. Philosophical Magazine Letters, 2015, 95, 202-210.                                                     | 0.5 | 15        |
| 60 | Phase field modelling of the attachment of metallic droplets to solid particles in liquid slags: Influence of interfacial energies and slag supersaturation. Computational Materials Science, 2015, 108, 348-357. | 1.4 | 15        |
| 61 | Influence of the solubility range of intermetallic compounds on their growth behavior in hetero-junctions. Journal of Alloys and Compounds, 2015, 635, 289-299.                                                   | 2.8 | 12        |
| 62 | Correlation between Mechanical Behaviour and Microstructure in the Mg-Ca-Si-Sr System for Degradable Biomaterials Based on Thermodynamic Calculations. , 2015, , 431-436.                                         |     | 0         |
| 63 | Three-dimensional phase-field simulation of microstructural evolution in three-phase materials with different diffusivities. Journal of Materials Science, 2014, 49, 7066-7072.                                   | 1.7 | 11        |
| 64 | Microstructure simulation of grain growth in Cu Through Silicon Via using phase-field modeling. , 2014, , .                                                                                                       |     | 0         |
| 65 | Effect of grain boundary energy anisotropy on highly textured grain structures studied by phase-field simulations. Acta Materialia, 2014, 64, 443-454.                                                            | 3.8 | 44        |
| 66 | In-situ observation of isothermal CaSiO3 crystallization in CaO–Al2O3–SiO2 melts: A study of the effects of temperature and composition. Journal of Crystal Growth, 2014, 402, 1-8.                               | 0.7 | 16        |
| 67 | Formation of compounds and Kirkendall vacancy in the Cu–Sn system. Microelectronic Engineering, 2014, 120, 133-137.                                                                                               | 1.1 | 35        |
| 68 | Phase-field simulation study of the migration of recrystallization boundaries. Physical Review B, 2013, 88, .                                                                                                     | 1.1 | 60        |
| 69 | Evaluation of interfacial excess contributions in different phase-field models for elastically inhomogeneous systems. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 055018.            | 0.8 | 45        |
| 70 | Phase field modeling of the crystallization of FeOx–SiO2 melts in contact with an oxygen-containing atmosphere. Chemical Geology, 2011, 290, 156-162.                                                             | 1.4 | 11        |
| 71 | Bounding box framework for efficient phase field simulation of grain growth in anisotropic systems. Computational Materials Science, 2011, 50, 2221-2231.                                                         | 1.4 | 20        |
| 72 | Calculation of phase equilibria for an alloy nanoparticle in contact with a solid nanowire. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 173-182.                                  | 0.7 | 12        |

| #  | Article                                                                                                                                                                                                  | IF  | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Materialia, 2011, 59, 1077-1086.                                                        | 3.8 | 195       |
| 74 | A phase field model for isothermal crystallization of oxide melts. Acta Materialia, 2011, 59, 2156-2165.                                                                                                 | 3.8 | 41        |
| 75 | Phase-field analysis of a ternary two-phase diffusion couple with multiple analytical solutions. Acta Materialia, 2011, 59, 3946-3954.                                                                   | 3.8 | 10        |
| 76 | Analysis of the isothermal crystallization of CaSiO3 in a CaO–Al2O3–SiO2 melt through in situ observations. Journal of the European Ceramic Society, 2011, 31, 1873-1879.                                | 2.8 | 20        |
| 77 | On the rotation invariance of multi-order parameter models for grain growth. Scripta Materialia, 2010, 62, 827-830.                                                                                      | 2.6 | 6         |
| 78 | Grain growth in thin films with a fibre texture studied by phase-field simulations and mean field modelling. Philosophical Magazine, 2010, 90, 501-523.                                                  | 0.7 | 21        |
| 79 | Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations. Computational Materials Science, 2010, 49, 340-350.                              | 1.4 | 80        |
| 80 | Comparative study of two phase-field models for grain growth. Computational Materials Science, 2009, 46, 479-490.                                                                                        | 1.4 | 91        |
| 81 | Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Physical Review B, 2008, 78, .                                            | 1.1 | 291       |
| 82 | An introduction to phase-field modeling of microstructure evolution. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 268-294.                                                | 0.7 | 717       |
| 83 | Indium-assisted Growth of Si Nanowires: Perspectives on Controlled Growth for CMOS Applications.<br>Materials Research Society Symposia Proceedings, 2008, 1080, 1.                                      | 0.1 | 0         |
| 84 | Quantitative Phase-Field Approach for Simulating Grain Growth in Anisotropic Systems with Arbitrary Inclination and Misorientation Dependence. Physical Review Letters, 2008, 101, 025502.               | 2.9 | 113       |
| 85 | Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth. Nanotechnology, 2007, 18, 505307.              | 1.3 | 120       |
| 86 | Bounding box algorithm for three-dimensional phase-field simulations of microstructural evolution in polycrystalline materials. Physical Review E, 2007, 76, 056702.                                     | 0.8 | 46        |
| 87 | A Phase Field Model for grain Growth and Thermal Grooving in Thin Films with Orientation<br>Dependent Surface Energy. Solid State Phenomena, 2007, 129, 89-94.                                           | 0.3 | 6         |
| 88 | Alternative Catalysts For Si-Technology Compatible Growth Of Si Nanowires. Materials Research Society Symposia Proceedings, 2007, 1017, 14.                                                              | 0.1 | 2         |
| 89 | Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations. Acta Materialia, 2007, 55, 2173-2182.                                          | 3.8 | 114       |
| 90 | Threeâ€dimensional phase field simulations of grain growth in materials containing finely dispersed secondâ€phase particles. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 2020001-2020002. | 0.2 | 1         |

| #  | Article                                                                                                                                                                  | IF  | CITATION |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| 91 | Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles. Acta Materialia, 2006, 54, 1175-1184.             | 3.8 | 114      |
| 92 | A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles. Acta Materialia, 2005, 53, 1771-1781. | 3.8 | 107      |
| 93 | Thermodynamic optimization of the lead-free solder system Bi–In–Sn–Zn. Journal of Alloys and Compounds, 2003, 360, 98-106.                                               | 2.8 | 80       |
| 94 | 3D Phase-Field Simulation and Characterization of Microstructure Evolution during Liquid Phase Sintering. Advances in Science and Technology, 0, , .                     | 0.2 | 3        |
| 95 | Influence of 5 at.%Al-Additions on the FCC to BCC Phase Transformation in CrFeNi Concentrated Alloys. Journal of Phase Equilibria and Diffusion, 0, , 1.                 | 0.5 | 5        |
| 96 | Phase-field approach to simulate BCC-B2 phase separation in the AlnCrFe2Ni2 medium-entropy alloy. Journal of Materials Science, $0, 1$ .                                 | 1.7 | 7        |