
Sanjeev Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8789679/publications.pdf Version: 2024-02-01

SANIFEV SHUKIA

#	Article	IF	CITATIONS
1	CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 2011, 479, 74-79.	13.7	853
2	<scp>TET</scp> â€catalyzed oxidation of intragenic 5â€methylcytosine regulates <scp>CTCF</scp> â€dependent alternative splicing. EMBO Journal, 2016, 35, 335-355.	3.5	111
3	Single-Site Labeling of Native Proteins Enabled by a Chemoselective and Site-Selective Chemical Technology. Journal of the American Chemical Society, 2018, 140, 15114-15123.	6.6	104
4	Co-transcriptional regulation of alternative pre-mRNA splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 673-683.	0.9	79
5	PAK2–c-Myc–PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death and Disease, 2018, 9, 825.	2.7	63
6	Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11440-11445.	3.3	55
7	Chemoselective and Siteâ€Selective Lysineâ€Directed Lysine Modification Enables Singleâ€Site Labeling of Native Proteins. Angewandte Chemie - International Edition, 2020, 59, 10332-10336.	7.2	49
8	Single-site labeling of lysine in proteins through a metal-free multicomponent approach. Chemical Communications, 2018, 54, 7302-7305.	2.2	42
9	A saga of cancer epigenetics: linking epigenetics to alternative splicing. Biochemical Journal, 2017, 474, 885-896.	1.7	36
10	Hypoxia-induced TGF-β–RBFOX2–ESRP1 axis regulates human MENA alternative splicing and promotes EMT in breast cancer. NAR Cancer, 2020, 2, zcaa021.	1.6	31
11	Immunoproteomics reveals that cancer of the tongue and the gingivobuccal complex exhibit differential autoantibody response. Cancer Biomarkers, 2009, 5, 127-135.	0.8	24
12	SARS-CoV-2 spike E156G/Δ157-158 mutations contribute to increased infectivity and immune escape. Life Science Alliance, 2022, 5, e202201415.	1.3	24
13	Dietary-phytochemical mediated reversion of cancer-specific splicing inhibits Warburg effect in head and neck cancer. BMC Cancer, 2019, 19, 1031.	1.1	21
14	The HNRNPA2B1–MST1R–Akt axis contributes to epithelial-to-mesenchymal transition in head and neck cancer. Laboratory Investigation, 2020, 100, 1589-1601.	1.7	20
15	Tumor antigens eliciting autoantibody response in cancer of gingivoâ€buccal complex. Proteomics - Clinical Applications, 2007, 1, 1592-1604.	0.8	18
16	Integrated genomic analyses identify KDM1A's role in cell proliferation via modulating E2F signaling activity and associate with poor clinical outcome in oral cancer. Cancer Letters, 2015, 367, 162-172.	3.2	17
17	E2F1 and epigenetic modifiers orchestrate breast cancer progression by regulating oxygen-dependent ESRP1 expression. Oncogenesis, 2021, 10, 58.	2.1	17
18	Oxygen gradient and tumor heterogeneity: The chronicle of a toxic relationship. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188553.	3.3	17

SANJEEV SHUKLA

#	Article	IF	CITATIONS
19	Chemoselective and Siteâ€Selective Lysineâ€Directed Lysine Modification Enables Singleâ€Site Labeling of Native Proteins. Angewandte Chemie, 2020, 132, 10418-10422.	1.6	16
20	Hypoxia-induced changes in intragenic DNA methylation correlate with alternative splicing in breast cancer. Journal of Biosciences, 2020, 45, 1.	0.5	15
21	Tumor suppressor SMAR1 regulates PKM alternative splicing by HDAC6-mediated deacetylation of PTBP1. Cancer & Metabolism, 2021, 9, 16.	2.4	14
22	Hypoxia-induced alternative splicing in human diseases: the pledge, the turn, and the prestige. Cellular and Molecular Life Sciences, 2021, 78, 2729-2747.	2.4	12
23	Interplay within tumor microenvironment orchestrates neoplastic <scp>RNA</scp> metabolism and transcriptome diversity. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1676.	3.2	11
24	ERK1/2-EGR1-SRSF10 Axis Mediated Alternative Splicing Plays a Critical Role in Head and Neck Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 713661.	1.8	9
25	Prognostic utility of autoantibodies to αâ€enolase and <scp>H</scp> sp70 for cancer of the gingivoâ€buccal complex using immunoproteomics. Proteomics - Clinical Applications, 2013, 7, 392-402.	0.8	8
26	Unfolding the role of autophagy in the cancer metabolism. Biochemistry and Biophysics Reports, 2021, 28, 101158.	0.7	5
27	Improved loss-of-function CRISPR-Cas9 genome editing in human cells concomitant with inhibition of TGF-12 signaling. Molecular Therapy - Nucleic Acids, 2022, 28, 202-218.	2.3	2
28	S1670 The β2 Spectrin Suppresses Telomerase Reverse Transcriptase in Normal Cells. Its Loss May Lead to Hepatocellular Cancer Progression. Gastroenterology, 2010, 138, S-250.	0.6	0
29	225 Epigenetic Silencing of TGF-β/β-2 Spectrin Signaling in a Human Cancer Stem Cell Disorder: Beckwith-Wiedemann Syndrome-Implication for GI Cancers. Gastroenterology, 2010, 138, S-43.	0.6	0
30	Abstract 4912: The role of long-range enhancer blocker CTCF in TGF-β/β-2 spectrin signaling: A human cancer stem cell disorder, Beckwith-Wiedemann syndrome. , 2010, , .		0
31	Abstract 3079: Loss of \hat{I}^2 2-spectrin may lead to the activation of telomerase reverse transcriptase (TERT) and hepatocellular cancer formation. , 2010, , .		0