Daniel Brassard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/87894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films. Applied Physics Letters, 2005, 87, 051910.	3.3	301
2	Enhanced Photosusceptibility near <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:math> for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium Dioxide. Physical Review Letters, 2007, 99, 226401.	7.8	203
3	Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab on A Chip, 2010, 10, 418-431.	6.0	177
4	Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide. Physical Review B, 2012, 85, .	3.2	148
5	Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab on A Chip, 2008, 8, 1342.	6.0	93
6	Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film. Applied Physics Letters, 2010, 97, .	3.3	90
7	Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications. Lab on A Chip, 2015, 15, 2400-2411.	6.0	83
8	Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9249-9254.	7.1	76
9	Active pumping and control of flows in centrifugal microfluidics. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	48
10	Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes. Lab on A Chip, 2019, 19, 1941-1952.	6.0	48
11	Dielectric properties of sol–gel derived high-k titanium silicate thin films. Thin Solid Films, 2007, 515, 4788-4793.	1.8	41
12	3D thermoplastic elastomer microfluidic devices for biological probe immobilization. Lab on A Chip, 2011, 11, 4099.	6.0	37
13	Dielectric properties of amorphous hydrogenated silicon carbide thin films grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2003, 93, 4066-4071.	2.5	33
14	High-k titanium silicate thin films grown by reactive magnetron sputtering for complementary metal–oxide–semiconductor applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 851.	2.1	33
15	Compositional effect on the dielectric properties of high-k titanium silicate thin films deposited by means of a cosputtering process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 600-605.	2.1	30
16	Room-Temperature Deposited Titanium Silicate Thin Films for MIM Capacitor Applications. IEEE Electron Device Letters, 2007, 28, 261-263.	3.9	30
17	Rapid and multiplex detection of Legionella's RNA using digital microfluidics. Lab on A Chip, 2015, 15, 1609-1618.	6.0	30
18	Microfluidic filtration and extraction of pathogens from food samples by hydrodynamic focusing and inertial lateral migration. Biomedical Microdevices, 2015, 17, 17,	2.8	29

DANIEL BRASSARD

#	Article	IF	CITATIONS
19	Tuning the electrical resistivity of pulsed laser deposited TiSiOx thin films from highly insulating to conductive behaviors. Applied Physics Letters, 2004, 84, 2304-2306.	3.3	25
20	Centrifugal microfluidic lab-on-a-chip system with automated sample lysis, DNA amplification and microarray hybridization for identification of enterohemorrhagic <i>Escherichia coli</i> culture isolates. Analyst, The, 2020, 145, 6831-6845.	3.5	23
21	Substrate biasing effect on the electrical properties of magnetron-sputtered high-k titanium silicate thin films. Journal of Applied Physics, 2007, 102, .	2.5	18
22	Numerical modeling of electrowetting processes in digital microfluidic devices. Computers and Fluids, 2010, 39, 1510-1515.	2.5	18
23	Pulsed-laser deposition of high-k titanium silicate thin films. Journal of Applied Physics, 2005, 98, 054912.	2.5	17
24	Automated sample-to-answer centrifugal microfluidic system for rapid molecular diagnostics of SARS-CoV-2. Lab on A Chip, 2022, 22, 3157-3171.	6.0	17
25	Numerical modeling of electrowetting transport processes for digital microfluidics. Microfluidics and Nanofluidics, 2010, 8, 599-608.	2.2	15
26	Effect of thermal annealing on the structural and mechanical properties of amorphous silicon carbide films prepared by polymer-source chemical vapor deposition. Thin Solid Films, 2010, 518, 2738-2744.	1.8	13
27	Detection of renal biomarkers in chronic kidney disease using microfluidics: progress, challenges and opportunities. Biomedical Microdevices, 2020, 22, 29.	2.8	13
28	Single-electron tunneling at room temperature in TixSi1â^'xO2 nanocomposite thin films. Applied Physics Letters, 2005, 87, 253108.	3.3	11
29	Self-priming of liquids in capillary autonomous microfluidic systems. Microfluidics and Nanofluidics, 2012, 12, 371-382.	2.2	9
30	Thermal behavior of the microstructure and the electrical properties of magnetron-sputtered high-k titanium silicate thin films. Journal of Applied Physics, 2008, 103, 114110.	2.5	8
31	Advanced EWOD-based digital microfluidic system for multiplexed analysis of biomolecular interactions. , 2011, , .		8
32	An automated centrifugal microfluidic assay for whole blood fractionation and isolation of multiple cell populations using an aqueous two-phase system. Lab on A Chip, 2021, 21, 4060-4070.	6.0	5
33	Numerical modeling of the splitting of magnetic droplets by multiphase lattice Boltzmann equation. Journal of Applied Physics, 2009, 105, 07B517.	2.5	4
34	On-the-Fly Phase Transition and Density Changes of Aqueous Two-Phase Systems on a Centrifugal Microfluidic Platform. Langmuir, 2022, 38, 79-85.	3.5	2
35	Fabrication of Microfluidic Devices in Thermoplastic Elastomeric Materials for DNA Detection on Thermal Plastic Substrate. Materials Research Society Symposia Proceedings, 2009, 1222, 1.	0.1	0