
Jens Dyckmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8788883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid transfer of C and N excreted by decomposer soil animals to plants and above-ground herbivores. Soil Biology and Biochemistry, 2022, 166, 108582.	8.8	11
2	Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions. Science of the Total Environment, 2021, 760, 143397.	8.0	16
3	Nitrite isotope characteristics and associated soil N transformations. Scientific Reports, 2021, 11, 5008.	3.3	9
4	Nitrogen isotope analysis of aqueous ammonium and nitrate by membrane inlet isotope ratio mass spectrometry (MIRMS) at natural abundance levels. Rapid Communications in Mass Spectrometry, 2021, 35, e9077.	1.5	6
5	Evidence of considerable C and N transfer from peas to cereals via direct root contact but not via mycorrhiza. Scientific Reports, 2021, 11, 11424.	3.3	9
6	Carbon use efficiency and microbial functional diversity in a temperate Luvisol and a tropical Nitisol after millet litter and N addition. Biology and Fertility of Soils, 2020, 56, 1139-1150.	4.3	15
7	Get on your boots: estimating root biomass and rhizodeposition of peas under field conditions reveals the necessity of field experiments. Plant and Soil, 2019, 443, 449-462.	3.7	16
8	Compoundâ€specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. Ecological Monographs, 2019, 89, e01384.	5.4	39
9	Effects of soilâ€bound water exchange on the recovery of spike water by cryogenic water extraction. Rapid Communications in Mass Spectrometry, 2019, 33, 405-410.	1.5	21
10	Natural 13C abundance reveals age of dietary carbon sources in nematode trophic groups. Soil Biology and Biochemistry, 2019, 130, 1-7.	8.8	11
11	NH ₃ Volatilization, N ₂ O Emission and Microbial Biomass Turnover from ¹⁵ N-Labeled Manure Under Laboratory Conditions. Communications in Soil Science and Plant Analysis, 2018, 49, 537-551.	1.4	7
12	Carbon sequestration and turnover in soil under the energy crop <i>Miscanthus</i> : repeated ¹³ C natural abundance approach and literature synthesis. GCB Bioenergy, 2018, 10, 262-271.	5.6	44
13	NO Reduction to N ₂ O Improves Nitrate ¹⁵ N Abundance Analysis by Membrane Inlet Quadrupole Mass Spectrometry. Analytical Chemistry, 2018, 90, 11216-11218.	6.5	8
14	Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water. Hydrology and Earth System Sciences, 2018, 22, 3619-3637.	4.9	92
15	Preliminary assessment of stable nitrogen and oxygen isotopic composition of USCS51 and USCS52 nitrous oxide reference gases and perspectives on calibration needs. Rapid Communications in Mass Spectrometry, 2018, 32, 1207-1214.	1.5	21
16	Measuring ¹⁵ N Abundance and Concentration of Aqueous Nitrate, Nitrite, and Ammonium by Membrane Inlet Quadrupole Mass Spectrometry. Analytical Chemistry, 2017, 89, 6076-6081.	6.5	21
17	A closer look into the nitrogen blank in elemental analyser/isotope ratio mass spectrometry measurements. Rapid Communications in Mass Spectrometry, 2017, 31, 2051-2055.	1.5	7
18	Oxygen isotope fractionation during N ₂ O production by soil denitrification. Biogeosciences, 2016, 13, 1129-1144.	3.3	49

JENS DYCKMANS

#	Article	IF	CITATIONS
19	Automated system measuring triple oxygen and nitrogen isotope ratios in nitrate using the bacterial method and N _{2} O decomposition by microwave discharge . Rapid Communications in Mass Spectrometry, 2016, 30, 2635-2644.	1.5	15
20	Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biology Letters, 2016, 12, 20150646.	2.3	40
21	Stable isotope analysis (<i>δ</i> ¹³ C and <i>δ</i> ¹⁵ N) of soil nematodes from four feeding groups. PeerJ, 2016, 4, e2372.	2.0	12
22	Comparison of methods to determine triple oxygen isotope composition of N ₂ O. Rapid Communications in Mass Spectrometry, 2015, 29, 1991-1996.	1.5	8
23	Combined ¹³ C and ¹⁵ N isotope analysis on small samples using a nearâ€conventional elemental analyzer/isotope ratio mass spectrometer setup. Rapid Communications in Mass Spectrometry, 2014, 28, 1019-1022.	1.5	52
24	Soil water uptake by trees using water stable isotopes (δ2H and δ18O)â^'a method test regarding soil moisture, texture and carbonate. Plant and Soil, 2014, 376, 327-335.	3.7	103
25	Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives. Rapid Communications in Mass Spectrometry, 2014, 28, 1995-2007.	1.5	89
26	Comparison of HPLC Methods for the Determination of Amino Sugars in Soil Hydrolysates. Analytical Letters, 2013, 46, 2145-2164.	1.8	9
27	Impact of pea growth and arbuscular mycorrhizal fungi on the decomposition of 15N-labeled maize residues. Biology and Fertility of Soils, 2012, 48, 547-560.	4.3	21
28	Effects of residue location on soil organic matter turnover: results from an incubation experiment with 15 N-maize. Journal of Plant Nutrition and Soil Science, 2011, 174, 634-643.	1.9	8
29	Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates. Biology and Fertility of Soils, 2011, 47, 387-396.	4.3	93
30	Development of ergosterol, microbial biomass C, N, and P after steaming as a result of sucrose addition, and Sinapis alba cultivation. Biology and Fertility of Soils, 2010, 46, 323-331.	4.3	8
31	Slurry 15NH4-N recovery in herbage and soil: effects of application method and timing. Plant and Soil, 2010, 330, 357-368.	3.7	27
32	Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity. Applied Microbiology and Biotechnology, 2008, 80, 125-33.	3.6	46
33	Decomposition of maize residues after manipulation of colonization and its contribution to the soil microbial biomass. Biology and Fertility of Soils, 2008, 44, 891-895.	4.3	37
34	Microbial biomass and activity under oxic and anoxic conditions as affected by nitrate additions. Journal of Plant Nutrition and Soil Science, 2006, 169, 108-115.	1.9	14
35	A simple and rapid method for labelling earthworms with 15N and 13C. Soil Biology and Biochemistry, 2005, 37, 989-993.	8.8	23
36	Dual13C,15N labelling of terrestrial slugs (Deroceras reticulatum). Isotopes in Environmental and Health Studies, 2004, 40, 233-237.	1.0	1

JENS DYCKMANS

#	Article	IF	CITATIONS
37	Adding dissolved organic carbon to simulate freeze-thaw related N2O emissions from soil. Journal of Plant Nutrition and Soil Science, 2004, 167, 471-478.	1.9	49
38	Adenylates as an estimate of microbial biomass C in different soil groups. Soil Biology and Biochemistry, 2003, 35, 1485-1491.	8.8	42
39	Aeration effects on CO2, N2O, and CH4 emission and leachate composition of a forest soil. Journal of Plant Nutrition and Soil Science, 2003, 166, 39-45.	1.9	37
40	Influence of tree internal nitrogen reserves on the response of beech (Fagus sylvatica) trees to elevated atmospheric carbon dioxide concentration. Tree Physiology, 2002, 22, 41-49.	3.1	24
41	Relation between respiration, ATP content, and Adenylate Energy Charge (AEC) after incubation at different temperatures and after drying and rewetting. Journal of Plant Nutrition and Soil Science, 2002, 165, 435.	1.9	19
42	Use of microcalorimetry to study microbial activity during the transition from oxic to anoxic conditions. Biology and Fertility of Soils, 2002, 36, 66-71.	4.3	22
43	Long-term effects on soil microbial properties of heavy metals from industrial exhaust deposition. Journal of Plant Nutrition and Soil Science, 2001, 164, 657-663.	1.9	36
44	Different sources of heavy metals and their long-term effects on soil microbial properties. Biology and Fertility of Soils, 2001, 34, 241-247.	4.3	128