Hanchun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8788861/publications.pdf Version: 2024-02-01

ΗΛΝΟΗΙΙΝ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Porcine reproductive and respiratory syndrome in China. Virus Research, 2010, 154, 31-37.	1.1	249
2	The 30-Amino-Acid Deletion in the Nsp2 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Emerging in China Is Not Related to Its Virulence. Journal of Virology, 2009, 83, 5156-5167.	1.5	238
3	NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerging Infectious Diseases, 2015, 21, 2256-2257.	2.0	171
4	Nsp9 and Nsp10 Contribute to the Fatal Virulence of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Emerging in China. PLoS Pathogens, 2014, 10, e1004216.	2.1	136
5	Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Veterinary Microbiology, 2017, 209, 30-47.	0.8	116
6	Changes in the Cellular Proteins of Pulmonary Alveolar Macrophage Infected with Porcine Reproductive and Respiratory Syndrome Virus by Proteomics Analysis. Journal of Proteome Research, 2009, 8, 3091-3097.	1.8	99
7	Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China. Virus Research, 2009, 145, 97-105.	1.1	97
8	Complete sequence of a duck astrovirus associated with fatal hepatitis in ducklings. Journal of General Virology, 2009, 90, 1104-1108.	1.3	93
9	Cellular microRNA miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by activating innate antiviral immunity. Scientific Reports, 2015, 5, 10651.	1.6	67
10	A recombinant type 2 porcine reproductive and respiratory syndrome virus between NADC30-like and a MLV-like: Genetic characterization and pathogenicity for piglets. Infection, Genetics and Evolution, 2017, 54, 279-286.	1.0	67
11	Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like. Veterinary Microbiology, 2017, 207, 108-116.	0.8	67
12	Highly pathogenic porcine reproductive and respiratory syndrome virus infection results in acute lung injury of the infected pigs. Veterinary Microbiology, 2014, 169, 135-146.	0.8	62
13	Computer-aided codon-pairs deoptimization of the major envelope GP5 gene attenuates porcine reproductive and respiratory syndrome virus. Virology, 2014, 450-451, 132-139.	1.1	60
14	The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro. Virus Research, 2015, 195, 217-224.	1.1	51
15	Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A "Leaky―Vaccine with Debatable Efficacy and Safety. Vaccines, 2021, 9, 362.	2.1	47
16	Genetic Diversity Analysis of Genotype 2 Porcine Reproductive and Respiratory Syndrome Viruses Emerging in Recent Years in China. BioMed Research International, 2014, 2014, 1-13.	0.9	46
17	The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2. Research in Veterinary Science, 2016, 106, 159-164.	0.9	44
18	Involvement of unfolded protein response, p53 and Akt in modulation of porcine reproductive and respiratory syndrome virus-mediated JNK activation. Virology, 2013, 444, 233-240.	1.1	42

HANCHUN YANG

#	Article	IF	CITATIONS
19	Targeting Swine Leukocyte Antigen Class I Molecules for Proteasomal Degradation by the nsp1α Replicase Protein of the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06. Journal of Virology, 2016, 90, 682-693.	1.5	41
20	Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis. Virology Journal, 2018, 15, 170.	1.4	35
21	Isolation, identification, and whole genome sequencing of reticuloendotheliosis virus from a vaccine against Marek's disease. Poultry Science, 2015, 94, 643-649.	1.5	33
22	The S Gene Is Necessary but Not Sufficient for the Virulence of Porcine Epidemic Diarrhea Virus Novel Variant Strain BJ2011C. Journal of Virology, 2018, 92, .	1.5	33
23	Porcine reproductive and respiratory syndrome virus counteracts the porcine intrinsic virus restriction factors—IFITM1 and Tetherin in MARC-145 cells. Virus Research, 2014, 191, 92-100.	1.1	32
24	Genomic organization and molecular characterization of porcine cytomegalovirus. Virology, 2014, 460-461, 165-172.	1.1	32
25	Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus. PLoS Pathogens, 2019, 15, e1008169.	2.1	32
26	Induction of Apoptosis by the Nonstructural Protein 4 and 10 of Porcine Reproductive and Respiratory Syndrome Virus. PLoS ONE, 2016, 11, e0156518.	1.1	32
27	The interaction of nonstructural protein 9 with retinoblastoma protein benefits the replication of genotype 2 porcine reproductive and respiratory syndrome virus in vitro. Virology, 2014, 464-465, 432-440.	1.1	31
28	Genomic characterization and pathogenicity of a strain of type 1 porcine reproductive and respiratory syndrome virus. Virus Research, 2016, 225, 40-49.	1.1	31
29	The nsp2 Hypervariable Region of Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06 Is Associated with Viral Cellular Tropism to Primary Porcine Alveolar Macrophages. Journal of Virology, 2019, 93, .	1.5	30
30	Both Nsp1β and Nsp11 are responsible for differential TNF-α production induced by porcine reproductive and respiratory syndrome virus strains with different pathogenicity in vitro. Virus Research, 2015, 201, 32-40.	1.1	28
31	Mapping the Nonstructural Protein Interaction Network of Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virology, 2018, 92, .	1.5	28
32	Caspase-Dependent Apoptosis Induction via Viral Protein ORF4 of Porcine Circovirus 2 Binding to Mitochondrial Adenine Nucleotide Translocase 3. Journal of Virology, 2018, 92, .	1.5	27
33	The amino acid at residue 155 in nonstructural protein 4 of porcine reproductive and respiratory syndrome virus contributes to its inhibitory effect for interferon-β transcription in vitro. Virus Research, 2014, 189, 226-234.	1.1	26
34	Development of a fluorescent probeâ€based realâ€ŧime reverse transcription recombinaseâ€∎ided amplification assay for the rapid detection of classical swine fever virus. Transboundary and Emerging Diseases, 2021, 68, 2017-2027.	1.3	26
35	Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Passages in Swine. Journal of Virology, 2014, 88, 11981-11994.	1.5	24
36	Cellular DEAD-box RNA helicase 18 (DDX18) Promotes the PRRSV Replication via Interaction with Virus nsp2 and nsp10. Virus Research, 2017, 238, 204-212.	1.1	24

Hanchun Yang

#	Article	IF	CITATIONS
37	Nonstructural protein 9 residues 586 and 592 are critical sites in determining the replication efficiency and fatal virulence of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Virology, 2018, 517, 135-147.	1.1	24
38	Evolutionary analysis of six isolates of porcine reproductive and respiratory syndrome virus from a single pig farm: MLV-evolved and recombinant viruses. Infection, Genetics and Evolution, 2018, 66, 111-119.	1.0	24
39	Transcriptome Analysis Reveals Dynamic Gene Expression Profiles in Porcine Alveolar Macrophages in Response to the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus. BioMed Research International, 2018, 2018, 1-23.	0.9	24
40	Glycoproteins C and D of PRV Strain HB1201 Contribute Individually to the Escape From Bartha-K61 Vaccine-Induced Immunity. Frontiers in Microbiology, 2020, 11, 323.	1.5	24
41	High reversion potential of a cell-adapted vaccine candidate against highly pathogenic porcine reproductive and respiratory syndrome. Veterinary Microbiology, 2018, 227, 133-142.	0.8	23
42	Porcine reproductive and respiratory syndrome virus nsp1î² and nsp11 antagonize the antiviral activity of cholesterol-25-hydroxylase via lysosomal degradation. Veterinary Microbiology, 2018, 223, 134-143.	0.8	23
43	Nsp2 and CP5-M of Porcine Reproductive and Respiratory Syndrome Virus Contribute to Targets for Neutralizing Antibodies. Virologica Sinica, 2019, 34, 631-640.	1.2	22
44	PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine. Virology, 2017, 508, 45-53.	1.1	21
45	Establishment of a Blocking ELISA Detection Method for Against African Swine Fever Virus p30 Antibody. Frontiers in Veterinary Science, 2021, 8, 781373.	0.9	21
46	Development of the full-length cDNA clones of two porcine epidemic diarrhea disease virus isolates with different virulence. PLoS ONE, 2017, 12, e0173998.	1.1	19
47	Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs. Scientific Reports, 2016, 6, 21845.	1.6	18
48	TNF-α induced by porcine reproductive and respiratory syndrome virus inhibits the replication of classical swine fever virus C-strain. Veterinary Microbiology, 2019, 234, 25-33.	0.8	17
49	A strain of porcine deltacoronavirus: Genomic characterization, pathogenicity and its fullâ€length cDNA infectious clone. Transboundary and Emerging Diseases, 2021, 68, 2130-2146.	1.3	17
50	Interactome Profile of the Host Cellular Proteins and the Nonstructural Protein 2 of Porcine Reproductive and Respiratory Syndrome Virus. PLoS ONE, 2014, 9, e99176.	1.1	16
51	Unique Epitopes Recognized by Monoclonal Antibodies against HP-PRRSV: Deep Understanding of Antigenic Structure and Virus-Antibody Interaction. PLoS ONE, 2014, 9, e111633.	1.1	16
52	Cellular proteomic analysis of porcine circovirus type 2 and classical swine fever virus coinfection in porcine kidneyâ€15 cells using isobaric tags for relative and absolute quantitationâ€coupled LCâ€MS/MS. Electrophoresis, 2017, 38, 1276-1291.	1.3	16
53	Quantitative Proteomic Analysis of Porcine Intestinal Epithelial Cells Infected with Porcine Deltacoronavirus Using iTRAQ-Coupled LC-MS/MS. Journal of Proteome Research, 2020, 19, 4470-4485.	1.8	16
54	Highly Pathogenic PRRSV-Infected Alveolar Macrophages Impair the Function of Pulmonary Microvascular Endothelial Cells. Viruses, 2022, 14, 452.	1.5	16

HANCHUN YANG

#	Article	IF	CITATIONS
55	Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus. Veterinary Microbiology, 2015, 178, 217-229.	0.8	15
56	Antiviral Effect of 25-Hydroxycholesterol against Porcine Reproductive and Respiratory Syndrome virus <i>in vitro</i> . Antiviral Therapy, 2018, 23, 395-404.	0.6	15
57	Interaction of porcine reproductive and respiratory syndrome virus proteins with SUMO-conjugating enzyme reveals the SUMOylation of nucleocapsid protein. PLoS ONE, 2017, 12, e0189191.	1.1	13
58	Interleukin-2 enhancer binding factor 2 interacts with the nsp9 or nsp2 of porcine reproductive and respiratory syndrome virus and exerts negatively regulatory effect on the viral replication. Virology Journal, 2017, 14, 125.	1.4	13
59	Pseudorabies virus infection inhibits stress granules formation via dephosphorylating eIF2α. Veterinary Microbiology, 2020, 247, 108786.	0.8	13
60	Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Scientific Reports, 2016, 6, 27067.	1.6	12
61	The pUL56 of pseudorabies virus variant induces downregulation of swine leukocyte antigen class I molecules through the lysosome pathway. Virus Research, 2018, 251, 56-67.	1.1	12
62	Detection of pseudorabies virus with a realâ€time recombinaseâ€aided amplification assay. Transboundary and Emerging Diseases, 2022, 69, 2266-2274.	1.3	12
63	Viral evasion of PKR restriction by reprogramming cellular stress granules. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
64	Epitope mapping and characterization of a novel Nsp10-specific monoclonal antibody that differentiates genotype 2 PRRSV from genotype 1 PRRSV. Virology Journal, 2017, 14, 116.	1.4	10
65	The Chinese highly pathogenic porcine reproductive and respiratory syndrome virus infection suppresses Th17 cells response in vivo. Veterinary Microbiology, 2016, 189, 75-85.	0.8	9
66	Application of RNAscope technology to studying the infection dynamics of a Chinese porcine epidemic diarrhea virus variant strain BJ2011C in neonatal piglets. Veterinary Microbiology, 2019, 235, 220-228.	0.8	9
67	Complete Genome Sequence of Porcine Epidemic Diarrhea Virus from an Outbreak in a Vaccinated Farm in Shandong, China. Genome Announcements, 2016, 4, .	0.8	8
68	Identification of a novel linear B-cell epitope in nonstructural protein 11 of porcine reproductive and respiratory syndrome virus that are conserved in both genotypes. PLoS ONE, 2017, 12, e0188946.	1.1	8
69	Characterizing the PRRSV nsp2 Deubiquitinase Reveals Dispensability of Cis-Activity for Replication and a Link of nsp2 to Inflammation Induction. Viruses, 2019, 11, 896.	1.5	8
70	Identification of Nonstructural Protein 8 as the N-Terminus of the RNA-Dependent RNA Polymerase of Porcine Reproductive and Respiratory Syndrome Virus. Virologica Sinica, 2018, 33, 429-439.	1.2	7
71	Identification of an Intramolecular Switch That Controls the Interaction of Helicase nsp10 with Membrane-Associated nsp12 of Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virology, 2021, 95, e0051821.	1.5	7
72	Development of a VP2â€based realâ€ŧime fluorescent reverse transcription recombinaseâ€aided amplification assay to rapidly detect Senecavirus A. Transboundary and Emerging Diseases, 2022, 69, 2828-2839.	1.3	7

HANCHUN YANG

#	Article	IF	CITATIONS
73	A tandem mass tag-based quantitative proteomic analysis of fowl adenovirus serotype 4-infected LMH cells. Veterinary Microbiology, 2021, 255, 109026.	0.8	6
74	Construction of a Porcine Reproductive and Respiratory Syndrome Virus with Nanoluc Luciferase Reporter: a Stable and Highly Efficient Tool for Viral Quantification Both <i>In Vitro</i> and <i>In Vivo</i> . Microbiology Spectrum, 2022, 10, .	1.2	6
75	Animal Arterivirus Infections. BioMed Research International, 2014, 2014, 1-2.	0.9	5
76	A recombinant avian antibody against VP2 of infectious bursal disease virus protects chicken from viral infection. Research in Veterinary Science, 2017, 114, 194-201.	0.9	5
77	Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-β by upregulating cellular microRNAs in porcine alveolar macrophages in vitro. Experimental and Therapeutic Medicine, 2018, 15, 115-126.	0.8	5
78	Induction of Rod-Shaped Structures by Herpes Simplex Virus Glycoprotein I. Journal of Virology, 2020, 94, .	1.5	5
79	Attenuation of porcine deltacoronavirus disease severity by porcine reproductive and respiratory syndrome virus coinfection in a weaning pig model. Virulence, 2021, 12, 1011-1021.	1.8	5
80	PRRSV Promotes MARC-145 Cells Entry Into S Phase of the Cell Cycle to Facilitate Viral Replication via Degradation of p21 by nsp11. Frontiers in Veterinary Science, 2021, 8, 642095.	0.9	5
81	Comparative Proteomic Analysis Reveals Mx1 Inhibits Senecavirus A Replication in PK-15 Cells by Interacting with the Capsid Proteins VP1, VP2 and VP3. Viruses, 2022, 14, 863.	1.5	4
82	Prevalence and Evolution Analysis of Porcine Circovirus 3 in China from 2018 to 2022. Animals, 2022, 12, 1588.	1.0	4
83	Evolutionary Patterns of Codon Usage in Major Lineages of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses, 2021, 13, 1044.	1.5	3
84	Recombinant Encephalomyocarditis Viruses Elicit Neutralizing Antibodies against PRRSV and CSFV in Mice. PLoS ONE, 2015, 10, e0129729.	1.1	2
85	Transcriptomic Profiling of Mouse Mast Cells upon Pathogenic Avian H5N1 and Pandemic H1N1 Influenza a Virus Infection. Viruses, 2022, 14, 292.	1.5	2
86	Proteomic Analysis of Vero Cells Infected with Pseudorabies Virus. Viruses, 2022, 14, 755.	1.5	2
87	Development of a sandwich Dot-ELISA for detecting bovine viral diarrhea virus antigen with E2 recombinant protein. Frontiers of Agriculture in China, 2009, 3, 325-331.	0.2	1
88	Identification of three site mutations in nonstructural protein 1l², glycoprotein 3 and glycoprotein 5 that correlate with increased interferon l± resistance of porcine reproductive and respiratory syndrome virus. Veterinary Microbiology, 2019, 236, 108395.	0.8	1
89	Mapping the Key Residues within the Porcine Reproductive and Respiratory Syndrome Virus nsp1î± Replicase Protein Required for Degradation of Swine Leukocyte Antigen Class I Molecules. Viruses, 2022, 14, 690.	1.5	0