List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8788613/publications.pdf

Version: 2024-02-01

81900 175258 2,827 63 39 52 citations h-index g-index papers 63 63 63 2027 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Activity and electron donor preference of two denitrifying bacterial strains identified by Raman gas spectroscopy. Analytical and Bioanalytical Chemistry, 2022, 414, 601-611.	3.7	3
2	Raman Spectroscopy and Imaging in Bioanalytics. Analytical Chemistry, 2022, 94, 86-119.	6.5	46
3	Parallelized Raman Difference Spectroscopy for the Investigation of Chemical Interactions. Analytical Chemistry, 2022, 94, 10346-10354.	6.5	8
4	Grasshopper herbivory immediately affects element cycling but not export rates in an Nâ€limited grassland system. Ecosphere, 2021, 12, e03449.	2.2	6
5	Hydrogen and C2–C6 Alkane Sensing in Complex Fuel Gas Mixtures with Fiber-Enhanced Raman Spectroscopy. Analytical Chemistry, 2021, 93, 10546-10552.	6.5	34
6	Response to Comment on Hydrogen and C2–C6 Alkane Sensing in Complex Fuel Gas Mixtures with Fiber-Enhanced Raman Spectroscopy. Analytical Chemistry, 2021, 93, 16285-16287.	6.5	1
7	Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy. Nanophotonics, 2020, 9, 19-37.	6.0	43
8	Fiber-Enhanced Raman Gas Spectroscopy for the Study of Microbial Methanogenesis. Analytical Chemistry, 2020, 92, 12564-12571.	6.5	21
9	Rapid Raman Spectroscopic Analysis of Stress Induced Degradation of the Pharmaceutical Drug Tetracycline. Molecules, 2020, 25, 1866.	3.8	6
10	Detection of gas molecules by means of spectrometric and spectroscopic methods. , 2020, , 251-294.		1
11	Counterfeit and Substandard Test of the Antimalarial Tablet Riamet® by Means of Raman Hyperspectral Multicomponent Analysis. Molecules, 2019, 24, 3229.	3.8	21
12	Characterization of fuel gases with fiber-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2019, 411, 7399-7408.	3.7	48
13	Fiber-Enhanced Raman Gas Spectroscopy for ¹⁸ Oâ€" ¹³ C-Labeling Experiments. Analytical Chemistry, 2019, 91, 7562-7569.	6.5	49
14	Liquid-Core Microstructured Polymer Optical Fiber as Fiber-Enhanced Raman Spectroscopy Probe for Glucose Sensing. Journal of Lightwave Technology, 2019, 37, 2981-2988.	4.6	22
15	Fiber-Array-Based Raman Hyperspectral Imaging for Simultaneous, Chemically-Selective Monitoring of Particle Size and Shape of Active Ingredients in Analgesic Tablets. Molecules, 2019, 24, 4381.	3.8	22
16	Highly Sensitive Detection of the Antibiotic Ciprofloxacin by Means of Fiber Enhanced Raman Spectroscopy. Molecules, 2019, 24, 4512.	3.8	20
17	OH diffusion effects at preparation of antiresonant hollow core fibers. , 2019, , .		0
18	Fiber enhanced Raman gas spectroscopy. TrAC - Trends in Analytical Chemistry, 2018, 103, 230-238.	11.4	74

#	Article	IF	Citations
19	Monitoring of gas composition in a laboratory biogas plant using cavity enhanced Raman spectroscopy. Analyst, The, 2018, 143, 1358-1366.	3.5	49
20	Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range. Analytical Methods, 2018, 10, 586-592.	2.7	36
21	Fiber-Enhanced Raman Sensing of Cefuroxime in Human Urine. Analytical Chemistry, 2018, 90, 13243-13248.	6.5	38
22	Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiology Ecology, 2018, 94, .	2.7	56
23	Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity. Analytical Chemistry, 2017, 89, 1117-1122.	6.5	41
24	Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers. ACS Photonics, 2017, 4, 138-145.	6.6	79
25	Vibrational spectroscopic characterization of arylisoquinolines by means of Raman spectroscopy and density functional theory calculations. Physical Chemistry Chemical Physics, 2017, 19, 29918-29926.	2.8	17
26	Analysis of Fiber-Enhanced Raman Gas Sensing Based on Raman Chemical Imaging. Analytical Chemistry, 2017, 89, 12269-12275.	6.5	46
27	Ultrasensitive Detection of Antiseptic Antibiotics in Aqueous Media and Human Urine Using Deep UV Resonance Raman Spectroscopy. Analytical Chemistry, 2017, 89, 9997-10003.	6.5	44
28	Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the Earth's critical zone. Analyst, The, 2017, 142, 3360-3369.	3.5	41
29	Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia. Analyst, The, 2016, 141, 6104-6115.	3.5	48
30	All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening. Analyst, The, 2016, 141, 2023-2029.	3.5	49
31	Multigas Leakage Correction in Static Environmental Chambers Using Sulfur Hexafluoride and Raman Spectroscopy. Analytical Chemistry, 2015, 87, 11137-11142.	6.5	45
32	<i>Pinus sylvestris</i> switches respiration substrates under shading but not during drought. New Phytologist, 2015, 207, 542-550.	7. 3	44
33	Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy. Analyst, The, 2015, 140, 3143-3149.	3.5	48
34	Online investigation of respiratory quotients in <i>Pinus sylvestris</i> and <i>Picea abies</i> during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry. Analyst, The, 2015, 140, 4473-4481.	3.5	50
35	Fast and Highly Sensitive Fiber-Enhanced Raman Spectroscopic Monitoring of Molecular H ₂ and CH ₄ for Point-of-Care Diagnosis of Malabsorption Disorders in Exhaled Human Breath. Analytical Chemistry, 2015, 87, 982-988.	6.5	125
36	Raman spectroscopic investigation of 13CO2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech). Analytical and Bioanalytical Chemistry, 2015, 407, 1813-1817.	3.7	39

#	Article	IF	Citations
37	Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing. Analytica Chimica Acta, 2015, 864, 39-47.	5.4	47
38	Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports. Analytica Chimica Acta, 2015, 875, 1-6.	5.4	9
39	Fiber-enhanced Raman multi-gas spectroscopy: what is the potential of its application to breath analysis?. Bioanalysis, 2015, 7, 281-284.	1.5	46
40	Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet. Optics Express, 2015, 23, 2557.	3.4	13
41	Low-loss single-mode guidance in large-core antiresonant hollow-core fibers. Optics Letters, 2015, 40, 3432.	3.3	59
42	Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells. Analytica Chimica Acta, 2015, 894, 76-84.	5.4	47
43	Double antiresonant hollow core fiber – guidance in the deep ultraviolet by modified tunneling leaky modes. Optics Express, 2014, 22, 19131.	3.4	61
44	Enhanced Raman multigas sensing – a novel tool for control and analysis of ¹³ CO ₂ labeling experiments in environmental research. Analyst, The, 2014, 139, 3879.	3.5	63
45	Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis. Analytical Chemistry, 2014, 86, 5278-5285.	6.5	152
46	Raman Spectroscopyâ€"An Innovative and Versatile Tool To Follow the Respirational Activity and Carbonate Biomineralization of Important Cave Bacteria. Analytical Chemistry, 2013, 85, 8708-8714.	6.5	48
47	Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy. Analytical Chemistry, 2013, 85, 1295-1299.	6.5	55
48	Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs. Analytical Chemistry, 2013, 85, 6264-6271.	6.5	75
49	Calcite Biomineralization by Bacterial Isolates from the Recently Discovered Pristine Karstic Herrenberg Cave. Applied and Environmental Microbiology, 2012, 78, 1157-1167.	3.1	112
50	Nondestructive Three-Dimensional Analysis of Layered Polymer Structures with Chemical Imaging. Langmuir, 2010, 26, 19027-19032.	3.5	37
51	Structural analysis of the antimalarial drug halofantrine by means of Raman spectroscopy and density functional theory calculations. Journal of Biomedical Optics, 2010, 15, 041516.	2.6	47
52	Relationship between molecular structure and Raman spectra of quinolines. Journal of Molecular Structure, 2009, 924-926, 301-308.	3.6	42
53	Morphology-sensitive Raman modes of the malaria pigment hemozoin. Analyst, The, 2009, 134, 1126.	3.5	52
54	UV Raman Imaging A Promising Tool for Astrobiology: Â Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites. Analytical Chemistry, 2007, 79, 1101-1108.	6.5	50

#	Article	IF	CITATIONS
55	Structural Analysis of the Anti-Malaria Active Agent Chloroquine under Physiological Conditions. Journal of Physical Chemistry B, 2007, 111, 1815-1822.	2.6	46
56	Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites. Lab on A Chip, 2007, 7, 1125 .	6.0	96
57	Ultrasensitivein situTracing of the Alkaloid Dioncophylline A in the Tropical LianaTriphyophyllum peltatumby Applying Deep-UV Resonance Raman Microscopy. Analytical Chemistry, 2007, 79, 986-993.	6.5	46
58	Device for Raman Difference Spectroscopy. Analytical Chemistry, 2007, 79, 6159-6166.	6.5	41
59	$\langle i \rangle$ In Situ $\langle i \rangle$ Localization and Structural Analysis of the Malaria Pigment Hemozoin. Journal of Physical Chemistry B, 2007, 111, 11047-11056.	2.6	57
60	In situUV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark. Journal of Physical Chemistry B, 2007, 111, 4171-4177.	2.6	50
61	UV Raman spectroscopy—A technique for biological and mineralogical in situ planetary studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 1029-1035.	3.9	70
62	Raman spectroscopic investigation of the antimalarial agent mefloquine. Analytical and Bioanalytical Chemistry, 2007, 387, 1749-1757.	3.7	41
63	In vivo localization and identification of the antiplasmodial alkaloid dioncophylline A in the tropical lianaTriphyophyllum peltatum by a combination of fluorescence, near infrared Fourier transform Raman microscopy, and density functional theory calculations. Biopolymers, 2006, 82, 295-300.	2.4	45